Abbak R.A., Erol B. and Ustun A., 2012. Comparison of the KTH and remove-compute-restore techniques to geoid modelling in a mountainous area. Comput. Geoscie., 48, 31–40
Article
Google Scholar
Abbak R.A. and Ustun A., 2015. A software package for computing a regional gravimetric geoid model by the KTH method. Earth Sci. Inform., 8, 255–265
Article
Google Scholar
Barthelmes F., 1988. Local gravity field approximation by point masses with optimized positions. 6th International Symposium “Geodesy and Physics of the Earth”. Veröffentlichungen des Zentralinstituts für Physik der Erde, Nr. 102, Selbstverlag des Instituts, Potsdam, Germany.
Google Scholar
Barthelmes F. and Dietrich R., 1991. Use of point masses on optimized positions for the approximation of the gravity field. In: Rapp R.H. and Sansò F. (Eds), Determination of the Geoid: Present and Future. International Association of Geodesy Symposia 106, Springer, New York, 484–493
Chapter
Google Scholar
Bauer F., Hohage T. and Munk A., 2009. Iteratively regularized Gauss-Newton method for nonlinear inverse problems with random noise. SIAM J. Numer. Anal., 47, 1827–1846
Article
Google Scholar
Boyd S. and Vandenberghe L., 2004. Convex Optimization. Cambridge University Press, Cambridge, U.K.
Book
Google Scholar
Chambodut A., Panet I., Mandea M., Diament M., Holschneider M. and Jamet O., 2005. Wavelet frames: an alternative to spherical harmonic representation of potential fields. Geophysical J. Int., 163, 875–899
Article
Google Scholar
Doicu A., Schreier F. and Hess M., 2002. Iteratively regularized Gauss-Newton method for atmospheric remote sensing. Comput. Phys. Commun., 148, 214–226
Article
Google Scholar
Featherstone W., Holmes S., Kirby J. and Kuhn M., 2004. Comparison of remove-compute-restore and University of New Brunswick techniques to geoid determination over Australia, and inclusion of Wiener-type filters in reference field contribution. J. Surv. Eng., 130, 40–17
Article
Google Scholar
Foroughi I. and Tenzer R., 2014. Assessment of the direct inversion scheme for the quasigeoid modeling based on applying the Levenberg-Marquardt algorithm. Appl. Geomat., 6, 171–180
Article
Google Scholar
Goyal R., Ågren J., Featherstone W.E., Sjöberg L.E., Dikshit O. and Balasubramanian N., 2021. Empirical comparison between stochastic and deterministic modifiers over the French Auvergne geoid computation test-bed. Surv. Rev., DOI: https://doi.org/10.1080/00396265.2021.1871821
Hansen P.C., 1990. Truncated singular value decomposition solutions to discrete ill-posed problems with ill-determined numerical rank. SIAM J. Sci. Stat. Comput., 11, 503–518
Article
Google Scholar
Hansen P.C., 1994. Regularization tools: a Matlab package for analysis and solution of discrete ill-posed problems. Numer. Algorithms, 6, 1–35
Article
Google Scholar
Heikkinen M., 1981. Solving the Shape of the Earth by Using Digital Density Models. Reports of the Finnish Geodetic Institute, 81, Helsinki, Finland
Holschneider M., Chambodut A. and Mandea M., 2003. From global to regional analysis of the magnetic field on the sphere using wavelet frames. Phys. Earth Planet. Inter., 135, 107–124
Article
Google Scholar
Janák J., Pitoñák M. and Minarechová Z., 2014. Regional quasigeoid from GOCE and terrestrial measurements. Stud. Geophys. Geod., 58, 626–649
Article
Google Scholar
Klees R. and Wittwer T., 2007. A data-adaptive design of a spherical basis function network for gravity field modelling. In: Tregoning P. and Rizos C. (Eds), Dynamic Planet. International Association of Geodesy Symposia 130, Springer, Berlin, Germany, 322–328
Chapter
Google Scholar
Klees R., Tenzer R., Prutkin I. and Wittwer T., 2008. A data-driven approach to local gravity field modelling using spherical radial basis functions. J. Geodesy, 82, 457–471
Article
Google Scholar
Lin M., Denker H. and Müller J., 2014. Regional gravity field modeling using free-positioned point masses. Stud. Geophys. Geod., 58, 207–226
Article
Google Scholar
Lin M., Denker H. and Müller J., 2019. A comparison of fixed-and free-positioned point mass methods for regional gravity field modeling. J. Geodyn., 125, 32–47
Article
Google Scholar
Mahbuby H., Safari A. and Foroughi I., 2017. Local gravity field modeling using spherical radial basis functions and a genetic algorithm. C. R. Geosci., 349, 106–113
Article
Google Scholar
Marchenko A.N., 1998. Parameterization of the Earth’s Gravity Field: Point and Line Singularities. Lviv Astronomical and Geodetic Society, Lviv, Ukraine
Google Scholar
Marchenko A.N., Barthelmes F., Meyer U. and Schwintzer P., 2001. Regional Geoid Determination: an Application to Airborne Gravity Data in the Skagerrak. Scientific Technical Report STR 01/07, Deutsches GeoForschungsZentrum GFZ, Potsdam, Germany, DOI: https://doi.org/10.48440/gfz.b103-010085
Google Scholar
Moritz H., 1980. Advanced Physical Geodesy. Herbert Wichmann Verlag, Karlsruhe, Germany
Google Scholar
Nocedal J. and Wright S.J, 1999. Numerical Optimization. Springer Science, New York
Book
Google Scholar
Ophaug V. and Gerlach C., 2017. On the equivalence of spherical splines with least-squares collocation and Stokes’s formula for regional geoid computation. J. Geodesy, 91, 1367–1382
Article
Google Scholar
Orr M.J., 1995. Regularization in the selection of radial basis function centers. Neural Comput., 7, 606–623
Article
Google Scholar
Panet I., Chambodut A., Diament M., Holschneider M. and Jamet O., 2006. New insights on intraplate volcanism in French Polynesia from wavelet analysis of GRACE, CHAMP, and sea surface data. J. Geophys. Res.-Solid Earth, 111, B09403, DOI: https://doi.org/10.1029/2005JB004141
Article
Google Scholar
Pavlis N.K., Holmes S.A., Kenyon S.C. and Factor J.K., 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res., 117, B04406, DOI: https://doi.org/10.1029/2011JB008916
Google Scholar
Qi-Nian J., 2000. On the iteratively regularized Gauss-Newton method for solving nonlinear ill-posed problems. Math. Comput., 69, 1603–1623
Article
Google Scholar
Safari A., Sharifi M., Amin H., Foroughi I. and Tenzer R., 2014. Determining the gravitational gradient tensor using satellite-altimetry observations over the Persian Gulf. Mar. Geod., 37, 404–418
Article
Google Scholar
Schmidt, M., Fabert, O., Shum, C. and Han, S.-C., 2004. Gravity field determination using multiresolution techniques. In: Lacoste H. (Ed.), 2nd International GOCE User Workshop: GOCE, the Geoid and Oceanography. ESA SP-569, European Space Agency, Noordwijk, The Netherlands, ISBN (Print) 92-9092-880-8, ISSN 1609-042X
Google Scholar
Schmidt M., Kusche J., van Loon J., Shum C., Han S.-C. and Fabert O., 2005. Multiresolution representation of a regional geoid from satellite and terrestrial gravity data. In: Jekeli C., Bastos L. and Fernandes L. (Eds), Gravity, Geoid and Space Missions. International Association of Geodesy Symposia, 129. Springer, Heidelberg, Germany, 167–172
Chapter
Google Scholar
Sjöberg L., 2005. A discussion on the approximations made in the practical implementation of the remove-compute-restore technique in regional geoid modelling. J. Geodesy, 78, 645–653
Article
Google Scholar
Tenzer R. and Klees R., 2008. The choice of the spherical radial basis functions in local gravity field modeling. Stud. Geophys. Geod., 52, 287–304
Article
Google Scholar
Tenzer R., Klees R. and Wittwer T., 2012. Local gravity field modelling in rugged terrain using spherical radial basis functions: case study for the Canadian rocky mountains. In: Kenyon S., Pacino M.C. and Marti U. (Eds), Geodesy for Planet Earth. International Association of Geodesy Symposia, 136, Springer, New York, 401–109
Chapter
Google Scholar
Vermeer M., 1995. Mass point geopotential modelling using fast spectral techniques; historical overview, toolbox description, numerical experiment. Manuscr. Geod., 20, 362–378
Google Scholar
Yildiz H., 2012. A study of regional gravity field recovery from GOCE vertical gravity gradient data in the Auvergne test area using collocation. Stud. Geophys. Geod., 56, 171–184
Article
Google Scholar