Skip to main content

Application of the nonlinear optimisation in regional gravity field modelling using spherical radial base functions

Abstract

The gravity field is a signature of the mass distribution and interior structure of the Earth, in addition to all its geodetic applications especially geoid determination and vertical datum unification. Determination of a regional gravity field model is an important subject and needs to be investigated and developed. Here, the spherical radial basis functions (SBFs) are applied in two scenarios for this purpose: interpolating the gravity anomalies and solving the fundamental equation of physical geodesy for geoid or disturbing potential determination, which has the possibility of being verified by the Global Navigation Satellite Systems (GNSS)/levelling data. Proper selections of the number of SBFs and optimal location of the applied SBFs are important factors to increase the accuracy of estimation. In this study, the gravity anomaly interpolation based on the SBFs is performed by Gauss-Newton optimisation with truncated singular value decomposition, and a Quasi-Newton method based on line search to solve the minimisation problems with a small number of iterations is developed. In order to solve the fundamental equation of physical geodesy by the SBFs, the truncated Newton optimisation is applied as the Hessian matrix of the objective function is not always positive definite. These two scenarios are applied on the terrestrial free-air gravity anomalies over the topographically rough area of Auvergne. The obtained accuracy for the interpolated gravity anomaly model is 1.7 mGal with the number of point-masses about 30% of the number of observations, and 1.5 mGal in the second scenario where the number of used kernels is also 30%. These accuracies are root mean square errors (RMSE) of the differences between predicted and observed gravity anomalies at check points. Moreover, utilising the optimal constructed model from the second scenario, the RMSE of 9 cm is achieved for the differences between the gravimetric height anomalies derived from the model and the geometric height anomalies from GNSS/levelling points.

References

  • Abbak R.A., Erol B. and Ustun A., 2012. Comparison of the KTH and remove-compute-restore techniques to geoid modelling in a mountainous area. Comput. Geoscie., 48, 31–40

    Article  Google Scholar 

  • Abbak R.A. and Ustun A., 2015. A software package for computing a regional gravimetric geoid model by the KTH method. Earth Sci. Inform., 8, 255–265

    Article  Google Scholar 

  • Barthelmes F., 1988. Local gravity field approximation by point masses with optimized positions. 6th International Symposium “Geodesy and Physics of the Earth”. Veröffentlichungen des Zentralinstituts für Physik der Erde, Nr. 102, Selbstverlag des Instituts, Potsdam, Germany.

    Google Scholar 

  • Barthelmes F. and Dietrich R., 1991. Use of point masses on optimized positions for the approximation of the gravity field. In: Rapp R.H. and Sansò F. (Eds), Determination of the Geoid: Present and Future. International Association of Geodesy Symposia 106, Springer, New York, 484–493

    Chapter  Google Scholar 

  • Bauer F., Hohage T. and Munk A., 2009. Iteratively regularized Gauss-Newton method for nonlinear inverse problems with random noise. SIAM J. Numer. Anal., 47, 1827–1846

    Article  Google Scholar 

  • Boyd S. and Vandenberghe L., 2004. Convex Optimization. Cambridge University Press, Cambridge, U.K.

    Book  Google Scholar 

  • Chambodut A., Panet I., Mandea M., Diament M., Holschneider M. and Jamet O., 2005. Wavelet frames: an alternative to spherical harmonic representation of potential fields. Geophysical J. Int., 163, 875–899

    Article  Google Scholar 

  • Doicu A., Schreier F. and Hess M., 2002. Iteratively regularized Gauss-Newton method for atmospheric remote sensing. Comput. Phys. Commun., 148, 214–226

    Article  Google Scholar 

  • Featherstone W., Holmes S., Kirby J. and Kuhn M., 2004. Comparison of remove-compute-restore and University of New Brunswick techniques to geoid determination over Australia, and inclusion of Wiener-type filters in reference field contribution. J. Surv. Eng., 130, 40–17

    Article  Google Scholar 

  • Foroughi I. and Tenzer R., 2014. Assessment of the direct inversion scheme for the quasigeoid modeling based on applying the Levenberg-Marquardt algorithm. Appl. Geomat., 6, 171–180

    Article  Google Scholar 

  • Goyal R., Ågren J., Featherstone W.E., Sjöberg L.E., Dikshit O. and Balasubramanian N., 2021. Empirical comparison between stochastic and deterministic modifiers over the French Auvergne geoid computation test-bed. Surv. Rev., DOI: https://doi.org/10.1080/00396265.2021.1871821

  • Hansen P.C., 1990. Truncated singular value decomposition solutions to discrete ill-posed problems with ill-determined numerical rank. SIAM J. Sci. Stat. Comput., 11, 503–518

    Article  Google Scholar 

  • Hansen P.C., 1994. Regularization tools: a Matlab package for analysis and solution of discrete ill-posed problems. Numer. Algorithms, 6, 1–35

    Article  Google Scholar 

  • Heikkinen M., 1981. Solving the Shape of the Earth by Using Digital Density Models. Reports of the Finnish Geodetic Institute, 81, Helsinki, Finland

  • Holschneider M., Chambodut A. and Mandea M., 2003. From global to regional analysis of the magnetic field on the sphere using wavelet frames. Phys. Earth Planet. Inter., 135, 107–124

    Article  Google Scholar 

  • Janák J., Pitoñák M. and Minarechová Z., 2014. Regional quasigeoid from GOCE and terrestrial measurements. Stud. Geophys. Geod., 58, 626–649

    Article  Google Scholar 

  • Klees R. and Wittwer T., 2007. A data-adaptive design of a spherical basis function network for gravity field modelling. In: Tregoning P. and Rizos C. (Eds), Dynamic Planet. International Association of Geodesy Symposia 130, Springer, Berlin, Germany, 322–328

    Chapter  Google Scholar 

  • Klees R., Tenzer R., Prutkin I. and Wittwer T., 2008. A data-driven approach to local gravity field modelling using spherical radial basis functions. J. Geodesy, 82, 457–471

    Article  Google Scholar 

  • Lin M., Denker H. and Müller J., 2014. Regional gravity field modeling using free-positioned point masses. Stud. Geophys. Geod., 58, 207–226

    Article  Google Scholar 

  • Lin M., Denker H. and Müller J., 2019. A comparison of fixed-and free-positioned point mass methods for regional gravity field modeling. J. Geodyn., 125, 32–47

    Article  Google Scholar 

  • Mahbuby H., Safari A. and Foroughi I., 2017. Local gravity field modeling using spherical radial basis functions and a genetic algorithm. C. R. Geosci., 349, 106–113

    Article  Google Scholar 

  • Marchenko A.N., 1998. Parameterization of the Earth’s Gravity Field: Point and Line Singularities. Lviv Astronomical and Geodetic Society, Lviv, Ukraine

    Google Scholar 

  • Marchenko A.N., Barthelmes F., Meyer U. and Schwintzer P., 2001. Regional Geoid Determination: an Application to Airborne Gravity Data in the Skagerrak. Scientific Technical Report STR 01/07, Deutsches GeoForschungsZentrum GFZ, Potsdam, Germany, DOI: https://doi.org/10.48440/gfz.b103-010085

    Google Scholar 

  • Moritz H., 1980. Advanced Physical Geodesy. Herbert Wichmann Verlag, Karlsruhe, Germany

    Google Scholar 

  • Nocedal J. and Wright S.J, 1999. Numerical Optimization. Springer Science, New York

    Book  Google Scholar 

  • Ophaug V. and Gerlach C., 2017. On the equivalence of spherical splines with least-squares collocation and Stokes’s formula for regional geoid computation. J. Geodesy, 91, 1367–1382

    Article  Google Scholar 

  • Orr M.J., 1995. Regularization in the selection of radial basis function centers. Neural Comput., 7, 606–623

    Article  Google Scholar 

  • Panet I., Chambodut A., Diament M., Holschneider M. and Jamet O., 2006. New insights on intraplate volcanism in French Polynesia from wavelet analysis of GRACE, CHAMP, and sea surface data. J. Geophys. Res.-Solid Earth, 111, B09403, DOI: https://doi.org/10.1029/2005JB004141

    Article  Google Scholar 

  • Pavlis N.K., Holmes S.A., Kenyon S.C. and Factor J.K., 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res., 117, B04406, DOI: https://doi.org/10.1029/2011JB008916

    Google Scholar 

  • Qi-Nian J., 2000. On the iteratively regularized Gauss-Newton method for solving nonlinear ill-posed problems. Math. Comput., 69, 1603–1623

    Article  Google Scholar 

  • Safari A., Sharifi M., Amin H., Foroughi I. and Tenzer R., 2014. Determining the gravitational gradient tensor using satellite-altimetry observations over the Persian Gulf. Mar. Geod., 37, 404–418

    Article  Google Scholar 

  • Schmidt, M., Fabert, O., Shum, C. and Han, S.-C., 2004. Gravity field determination using multiresolution techniques. In: Lacoste H. (Ed.), 2nd International GOCE User Workshop: GOCE, the Geoid and Oceanography. ESA SP-569, European Space Agency, Noordwijk, The Netherlands, ISBN (Print) 92-9092-880-8, ISSN 1609-042X

    Google Scholar 

  • Schmidt M., Kusche J., van Loon J., Shum C., Han S.-C. and Fabert O., 2005. Multiresolution representation of a regional geoid from satellite and terrestrial gravity data. In: Jekeli C., Bastos L. and Fernandes L. (Eds), Gravity, Geoid and Space Missions. International Association of Geodesy Symposia, 129. Springer, Heidelberg, Germany, 167–172

    Chapter  Google Scholar 

  • Sjöberg L., 2005. A discussion on the approximations made in the practical implementation of the remove-compute-restore technique in regional geoid modelling. J. Geodesy, 78, 645–653

    Article  Google Scholar 

  • Tenzer R. and Klees R., 2008. The choice of the spherical radial basis functions in local gravity field modeling. Stud. Geophys. Geod., 52, 287–304

    Article  Google Scholar 

  • Tenzer R., Klees R. and Wittwer T., 2012. Local gravity field modelling in rugged terrain using spherical radial basis functions: case study for the Canadian rocky mountains. In: Kenyon S., Pacino M.C. and Marti U. (Eds), Geodesy for Planet Earth. International Association of Geodesy Symposia, 136, Springer, New York, 401–109

    Chapter  Google Scholar 

  • Vermeer M., 1995. Mass point geopotential modelling using fast spectral techniques; historical overview, toolbox description, numerical experiment. Manuscr. Geod., 20, 362–378

    Google Scholar 

  • Yildiz H., 2012. A study of regional gravity field recovery from GOCE vertical gravity gradient data in the Auvergne test area using collocation. Stud. Geophys. Geod., 56, 171–184

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Eshagh.

Rights and permissions

Open Access : This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/license/by/4.0), which permits use, duplication, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mahbuby, H., Amerian, Y., Nikoofard, A. et al. Application of the nonlinear optimisation in regional gravity field modelling using spherical radial base functions. Stud Geophys Geod 65, 261–290 (2021). https://doi.org/10.1007/s11200-020-1077-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-020-1077-y

Keywords

  • regional gravity field modelling
  • spherical radial basis functions
  • Gauss-Newton optimisation method
  • line search method