Ågren J., 2004a. The analytical continuation bias in geoid determination using potential coefficients and terrestrial gravity data. J. Geodesy, 78, 314–332, DOI: https://doi.org/10.1007/s00190-004-0395-0
Article
Google Scholar
Ågren J., 2004b. Regional Geoid Determination Methods for the Era of Satellite Gravimetry: Numerical Investigations Using Synthetic Earth Gravity Models. PhD Thesis. Royal Institute of Technology (KTH), Stockholm, Sweden, https://www.diva-portal.org/smash/get/diva2:14396/FULLTEXT01.pdf
Google Scholar
Ågren J. and Sjöberg L.E., 2014. Investigation of gravity data requirements for a 5 mm-quasigeoid model over Sweden. In: Marti U. (Ed.), Gravity, Geoid and Height Systems. International Association of Geodesy Symposia, 141. Springer, Cham, Switzerland, 143–150, DOI: https://doi.org/10.1007/978-3-319-10837-7_18
Chapter
Google Scholar
Bjerhammar A., 1965. A new theory of gravimetric geodesy. Stud. Geophys. Geod., 9, 112–113, DOI: https://doi.org/10.1007/BF02607317
Article
Google Scholar
Cruz J.Y., 1985. Disturbance Vector in Space from Surface Gravity Anomalies Using Complementary Models. PhD Thesis. Ohio State University, OhioLINK Electronic Theses and Dissertations Center, http://rave.ohiolink.edu/etdc/view?acc_num=osu1487261553060066
Engels J., Grafarend E., Keller W., Martinec Z., Sansò F. and Vaníček P., 1993. The geoid as an inverse problem to be regularized. Math. Res., 74, 122–122
Google Scholar
Farahani H.H., Klees R. and Slobbe C., 2017. Data requirements for a 5-mm quasi-geoid in the netherlands. Stud. Geophys. Geod., 61, 675–702, DOI: https://doi.org/10.1007/s11200-016-0171-7
Article
Google Scholar
Freeden W. and Nutz H., 2018. Geodetic observables and their mathematical treatment in multiscale framework, In: Freeden W. and Nashed M.Z. (Eds), Handbook of Mathematical Geodesy. Springer, Cham, Switzerland, 315–458, DOI: https://doi.org/10.1007/978-3-319-57181-2_4
Chapter
Google Scholar
Gradshteyn I.S. and Ryzhik I.M., 1979. Table of Integrals, Series, and Products: Corrected and Enlargred Edition. Academic Press, San Diego, CA, DOI: https://doi.org/10.1016/C2013-0-10754-4
Google Scholar
Heiskanen W.A. and Moritz H., 1967. Physical Geodesy. W.H. Freeman, San Francisco, CA
Google Scholar
Ilk K., 1987. On the regularization of ill-posed problems. In: Holota P. (Ed.), Proceedings of the Symposium on Figure and Dynamics of the Earth, Moon and Planets, 365–383, https://www.researchgate.net/publication/234423030_On_the_Regularization_of_Ill-Posed_Problems
Janák J., Pitoňák M. and Minarechová Z., 2014. Regional quasigeoid from GOCE and terrestrial measurements. Stud. Geophys. Geod., 58, 626–649. DOI: https://doi.org/10.1007/s11200-013-0543-1
Article
Google Scholar
Kellogg O.D., 1929. Foundations of Potential Theory. Frederick Ungar Publ., Berlin, Germany
Book
Google Scholar
Martinec Z., 1996. Stability investigations of a discrete downward continuation problem for geoid determination in the canadian rocky mountains. J. Geodesy, 70, 805–828, DOI: https://doi.org/10.1007/BF00867158
Article
Google Scholar
Martinec Z., 1998. Boundary-Value Problems for Gravimetric Determination of a Precise Geoid. Lecture Notes in Earth Sciences, 73. Springer-Verlag, Berlin, Germany, https://link.springer.com/book/10.1007%2FBFb0010337
Google Scholar
Michel V. and Telschow R., 2016. The regularized orthogonal functional matching pursuit for ill-posed inverse problems. SIAM J. Num. Anal., 54, 262–287, DOI: https://doi.org/10.1137/141000695
Article
Google Scholar
Moritz H., 1980a. Advanced Physical Geodesy. H. Wichmann Verlag, Karlsruhe, Germany
Google Scholar
Moritz H., 1980b. Geodetic Reference System 1980. J. Geodesy, 54, 395–405, DOI: https://doi.org/10.1007/BF02521480
Google Scholar
Nahavandchi H., 1998. On some methods of downward continuation of mean free-air gravity anomaly. Int. Geoid Ser. Bull., 8, 1–17, https://www.diva-portal.org/smash/get/diva2:8435/Fulltext01.pdf
Google Scholar
Novák P., 2000. Evaluation of Gravity Data for the Stokes-Helmert Solution to the Geodetic Boundary-Value Problem. PhD Thesis. University of New Brunswick, Fredericton, Canada, http://www2.unb.ca/gge/Research/GRL/GeodesyGroup/SHGeo/3_Topographical_Effects/2000_Novak.pdf
Google Scholar
Novák P., Kern M. and Schwarz K.P., 2001. Numerical studies on the harmonic downward continuation of band-limited airborne gravity. Stud. Geophys. Geod., 45, 327–345, DOI: https://doi.org/10.1023/A:1022028218964
Article
Google Scholar
Nyström E.J., 1930. Über die praktische auflösung von integralgleichungen mit anwendungen auf randwertaufgaben. Acta Mathematica, 54, 185–204, DOI: https://doi.org/10.1007/BF02547521 (in German)
Article
Google Scholar
Pavlis N.K., Holmes S.A., Kenyon S.C. and Factor J.K., 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res.-Soild Earth, 117, DOI: https://doi.org/10.1029/2011JB008916
Pitoňák M., Novák P., Eshagh M., Tenzer R. and Šprlák M., 2020. Downward continuation of gravitational field quantities to an irregular surface by spectral weighting. J. Geodesy, 94, Art.No. 62, DOI: https://doi.org/10.1007/s00190-020-01384-6
Pitoňák M., Šprlák M., Hamáčková E. and Novák P., 2016. Regional recovery of the disturbing gravitational potential by inverting satellite gravitational gradients. Geophys. J. Int., 205, 89–98, DOI: https://doi.org/10.1093/gji/ggw008
Article
Google Scholar
Rummel R., 2001. Global unification of height systems and GOCE. In: Sideris M.G. (Ed.), Gravity, Geoid and Geodynamics 2000. International Association of Geodesy Symposia, 123. Springer, Cham, Switzerland, 13–20, DOI: https://doi.org/10.1007/978-3-662-04827-6_3
Chapter
Google Scholar
Sacher M., Ihde J., Marti U. and Schlatter A., 2003. Status Report of the UELN/EVS Data Base. Publications of the IAG-Subcommission for Europe (EUREF), 12, 140–146, http://www.euref.eu/symposia/book2002/140-146.pdf
Google Scholar
Sajjadi S., 2020. Unifying the Irish Vertical Datum with the Normaal Amsterdams Peil (NAP). Ph.D. Thesis. Trinity College Dublin, Dublin, Ireland, http://hdl.handle.net/2262/93232
Google Scholar
Sajjadi S., Martinec Z., Prendergast P., Hagedoorn J., Šachl L., Readman P., Edwards R., O’Reilly B. and Horan C., 2020. The unification of gravity data for ireland-northern ireland. The Leading Edge, 39, 135–143, DOI: https://doi.org/10.1190/tle39020135.1
Article
Google Scholar
Sansò F. and Sideris M.G., 2016. Geodetic Boundary Value Problem: The Equivalence between Molodensky’s and Helmert’s Solutions. Springer, Cham, Switzerland, DOI: https://doi.org/10.1007/978-3-319-46358-2_1
Google Scholar
Sebera J., Pitoňák M., Hamáčková E. and Novák P., 2015. Comparative study of the spherical downward continuation. Surv. Geophys., 36, 253–267, DOI: https://doi.org/10.1007/s10712-014-9312-0
Article
Google Scholar
Sebera J., Šprlák M., Novák P., Bezděk A. and Val’ko M., 2014. Iterative spherical downward continuation applied to magnetic and gravitational data from satellite. Surv. Geophys., 35, 941–958, DOI: https://doi.org/10.1007/s10712-014-9285-z
Article
Google Scholar
Sjöberg L.E., 1975. On the Discrete Boundary Value Problem of Physical Geodesy with Harmonic Reductions to an Internal Sphere. Royal Institute of Technology (KIT), Stockholm, Sweden
Google Scholar
Sjöberg L.E., 2003. A solution to the downward continuation effect on the geoid determined by Stokes’ formula. J. Geodesy, 77, 94–100, DOI: https://doi.org/10.1007/s00190-002-0306-1
Article
Google Scholar
Sjöberg L.E., 2007. The topographic bias by analytical continuation in physical geodesy. J. Geodesy, 81, 345–350, DOI: https://doi.org/10.1007/s00190-006-0112-2
Article
Google Scholar
Vaníček P. and Kleusberg A., 1987. The Canadian Geoid-Stokesian approach. Manuscripta Geodaetica, 12, 86–98, http://www2.unb.ca/gge/Research/GRL/GeodesyGroup/SHGeo/1_Stokes-Helmert_Technique/1987_Vanicek_et_al.pdf
Google Scholar
Vaníček P., Sun W., Ong P., Martinec Z., Najafi M., Vajda P. and Ter Horst B., 1996. Downward continuation of Helmert’s gravity. J. Geodesy, 71, 21–34, DOI: https://doi.org/10.1007/s001900050072
Article
Google Scholar
Wang Y., 1990. The effect of topography on the determination of the geoid using analytical downward continuation. Bull. Geod., 64, 231–246, DOI: https://doi.org/10.1007/BF02519178
Article
Google Scholar
Wang Y.M., 1988. Downward Continuation of the Free-Air Gravity Anomalies to the Ellipsoid Using the Gradient Solution, Poisson’s Integral and Terrain Correction-Numerical Comparison and Computations. Technical Report AFGL-TR-88-0199. Department of Geodetic Science and Surveying, Ohio State University, Columbus, OH, https://www.researchgate.net/publication/235133946_Downward_Continuation_of_the_Free-Air_Gravity_Anomalies_to_the_Ellipsoid_Using_the_Gradient_Solution_Poisson’s_Integral_and_Terrain_Correction-_Numerical_Comparison_and_Computations
Google Scholar