An Z.S., Kukla G.J., Porter S.C. and Xiao J.L., 1991. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years. Quat. Res., 36, 29–36
Google Scholar
Aniku J.R.F. and Singer M.J., 1990. Pedogenic iron oxide trends in a marine terrace chronosequence. Soil Sci. Soc. Am. J., 54, 147–152
Google Scholar
Ao H., Deng C.L., Dekkers M.J. and Liu Q.S., 2010. Magnetic mineral dissolution in Pleistocene fluvio-lacustrine sediments, Nihewan Basin (North China). Earth Planet. Sci. Lett., 292, 191–200
Google Scholar
Balsam W.L., Ellwood B.B., Ji J.F., Williams E.R., Long X.Y. and Hassani A.E., 2011. Magnetic susceptibility as a proxy for rainfall: Worldwide data from tropical and temperate climate. Quat. Sci. Rev., 30, 2732–2744
Google Scholar
Balsam W.L., Ji J.F., Renock D., Deaton B.C. and Williams E., 2014. Determining hematite content from NUV/Vis/NIR spectra: Limits of detection. Am. Mineral., 99, 2280–2291
Google Scholar
Bhatia M.R., 1985. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: Provenance and tectonic control. Sediment. Geol., 45, 97–113
Google Scholar
Bloemendal J. and Demenocal P.B., 1989. Evidence for a change in the periodicity of tropical climate cycles at 2.4 Myr from whole-core magnetic susceptibility measurements. Nature, 342, 897–900
Google Scholar
Che Y.J., Guan X.C., Wang S.J. and Wu R., 2020. Spatial analysis of annual precipitation lines of 800 mm in the Eastern Monsoom of China. Plateau Meteorol., 39, 997–1006 (in Chinese)
Google Scholar
Chen J., An Z.S. and Head J., 1999. Variation of Rb/Sr ratios in the loess-paleosol sequences of central China during the last 130,000 years and their implications for monsoon paleoclimatology. Quat. Res., 51, 215–219
Google Scholar
Chen J., Ji J.F., Balsam W.L., Chen Y., Liu L.W. and An Z.S., 2002. Characterization of the Chinese loess-paleosol stratigraphy by whiteness measurement. Palaeogeogr. Palaeoclimatol. Palaeoecol., 183, 287–297
Google Scholar
Chen J. and Li G.J., 2011. Geochemical studies on the source region of Asian dust. Sci. China-Earth Sci., 54, 1279–1301
Google Scholar
Chen J.H. and Yang H.R., 1996. Geological development of the northwest China basins during the Mesozoic and Cenezoic. In: Zhiyi Z. and Dean W.T. (Eds), Phanerozoic Geology of Northwest China. Science Press, Beijing, China, 39–62
Google Scholar
Chen J.S., Liu X.M., Kravchinsky V.A., Lü B. and Chen Q., 2016. Post-depositional forcing of magnetic susceptibility variations at Kurtak section, Siberia. Quat. Int., 418, 2–9
Google Scholar
Chen J.S., Liu X.M. and Liu X.J., 2019. Sedimentary dynamics and climatic implications of Cretaceous loess-like red beds in the Lanzhou basin, northwest China. J. Asian Earth Sci., 180, Art.No. 103865, DOI: https://doi.org/10.1016/j.jseaes.2019.05.010
Collinson D.W., 1968. An estimate of the haematite content of sediments by magnetic analysis. Earth Planet. Sci. Lett., 4, 417–421
Google Scholar
Condie K.C., 1991. Another look at rare earth elements in shales. Geochim. Cosmochim. Acta., 55, 2527–2531
Google Scholar
Dasch E.J., 1969. Strontium isotopes in weathering profiles, deep-sea sediments, and sedimentary rocks. Geochim. Cosmochim. Acta., 33, 1521–1552
Google Scholar
Deaton B.C. and Balsam W.L., 1991. Visible spectroscopy; a rapid method for determining hematite and goethite concentration in geological materials. J. Sediment. Res., 61, 628–632
Google Scholar
Delgado L., Batezelli A., Ladeira F.S.B. and Luna J., 2019. Paleoenvironmental and paleoclimatic interpretation of the Late Cretaceous Marília Formation (Brazil) based on paleosol geochemistry. Catena, 180, 365–382
Google Scholar
Deng C.L., Zhu R.X., Jackson M.J., Verosub K.L. and Singer M.J., 2001. Variability of the temperature-dependent susceptibility of the Holocene eolian deposits in the Chinese loess plateau: A pedogenesis indicator. Phys. Chem. Earth A, 26, 873–878
Google Scholar
Ding Z.L., Sun J.M., Yang S.L. and Liu T.S., 2001a. Geochemistry of the Pliocene red clay formation in the Chinese Loess Plateau and implications for its origin, source provenance and paleoclimate change. Geochim. Cosmochim. Acta., 65, 901–913
Google Scholar
Ding Z.L., Yang S.L., Sun J.M. and Liu T.S., 2001b. Iron geochemistry of loess and red clay deposits in the Chinese Loess Plateau and implications for long-term Asian monsoon evolution in the last 7.0 Ma. Earth Planet. Sci. Lett., 185, 99–109
Google Scholar
Dunlop D.J. and Özdemir Ö., 1997. Rock Magnetism: Fundamentals and Frontiers. Cambridge University Press, Cambridge, U.K.
Google Scholar
Ferrat M., Weiss D.J., Strekopytov S., Dong S.F., Chen H.Y., Najorka J., Sun Y.B., Gupta S., Tada R. and Sinha R., 2011. Improved provenance tracing of Asian dust sources using rare earth elements and selected trace elements for palaeomonsoon studies on the eastern Tibetan Plateau. Geochim. Cosmochim. Acta., 75, 6374–6399
Google Scholar
Fine P., Verosub K. L. and Singer M. J., 1995. Pedogenic and lithogenic contributions to the magnetic susceptibility record of the Chinese loess/palaeosol sequence. Geophys. J. Int., 122, 97–107
Google Scholar
Frost G.M., Coe R.S., Meng Z.F., Peng Z.L., Chen Y., Courtillot V., Peltzer G., Tapponnier P. and Avouac J.-P., 1995. Preliminary early Cretaceous paleomagnetic results from the Gansu Corridor, China. Earth Planet. Sci. Lett., 129, 217–232
Google Scholar
Guo Z.T., Biscaye P., Wei L.Y., Chen X.H., Peng S.Z. and Liu T.S., 2000. Summer monsoon variations over the last 1.2 Ma from the weathering of loess-soil sequences in China. Geophys. Res. Lett., 27, 1751–1754
Google Scholar
Guo Z.T., Ruddiman W.F., Hao Q.Z., Wu H.B., Qiao Y.S., Zhu R.X., Peng S.Z., Wei J.J., Yuan B.Y. and Liu T.S., 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416, 159–163
Google Scholar
Hao Q.Z., Guo Z.T., Qiao Y.S., Xu B. and Oldfield F., 2010. Geochemical evidence for the provenance of middle Pleistocene loess deposits in southern China. Quat. Sci. Rev., 29, 3317–3326
Google Scholar
Harnois L., 1988. The CIW index: A new chemical index of weathering. Sediment. Geol., 55, 319–322
Google Scholar
Hasegawa H., Tada R., Jiang X., Suganuma Y., Imsamut S., Charusiri P., Ichinnorov N. and Yondon K., 2012. Drastic shrinking of the Hadley circulation during the mid-Cretaceous supergreenhouse. Clim. Past, 8, 1323–1337
Google Scholar
Heller F. and Liu T.S., 1984. Magnetism of Chinese loess deposits. Geophys. J. R. Astron. Soc., 77, 125–141
Google Scholar
Heller F., Shen C.D., Beer J., Liu X.M., Liu T.S., Bronger A., Suter M. and Bonani G., 1993. Quantitative estimates of pedogenic ferromagnetic mineral formation in Chinese loess and palaeoclimatic implications. Earth Planet. Sci. Lett., 114, 385–390
Google Scholar
Hu F.G. and Yang X.P., 2016. Geochemical and geomorphological evidence for the provenance of aeolian deposits in the Badain Jaran Desert, northwestern China. Quat. Sci. Rev., 131, 179–192
Google Scholar
Ji J.F., Balsam W.L. and Chen J., 2001. Mineralogic and climatic interpretations of the Luochuan loess section (China) based on diffuse reflectance spectrophotometry. Quat. Res., 56, 23–30
Google Scholar
Jiang X.S., Pan Z.X., Xu J.S., Li X.Y., Xie G.G. and Xiao Z.J., 2008. Late Cretaceous aeolian dunes and reconstruction of palaeo-wind belts of the Xinjiang Basin, Jiangxi Province, China. Palaeogeogr. Palaeoclimatol. Palaeoecol., 257, 58–66
Google Scholar
King J.W. and Channell J.E.T., 1991. Sedimentary magnetism, environmental magnetism, and magnetostratigraphy. Rev. Geophys., 29, 358–370
Google Scholar
Lepre C.J., 2019. Constraints on Fe-oxide formation in monsoonal Vertisols of Pliocene Kenya using rock magnetism and spectroscopy. Geochem. Geophys. Geosyst., 20, 4998–5013
Google Scholar
Li X.J., Zan J.B., Yang R.S., Fang X.M. and Yang S.L., 2020. Grain-size-dependent geochemical characteristics of Middle and Upper Pleistocene loess sequences from the Junggar Basin: Implications for the provenance of Chinese eolian deposits. Palaeogeogr. Palaeoclimatol. Palaeoecol., 538, Art.No. 109458, DOI: https://doi.org/10.1016/j.palaeo.2019.109458
Liu Q.S., Deng C.L., Yu Y.J., Torrent J., Jackson M.J., Banerjee S.K. and Zhu R.X., 2005. Temperature dependence of magnetic susceptibility in an argon environment: Implications for pedogenesis of Chinese loess/palaeosols. Geophys. J. Int., 161, 102–112
Google Scholar
Liu Q.S., Roberts A.P., Larrasoaña J.C., Banerjee S.K., Guyodo Y., Tauxe L. and Oldfield F., 2012. Environmental magnetism: Principles and applications. Rev. Geophys., 50, Art.No. RG4002, DOI: https://doi.org/10.1029/2012RG000393
Liu Z., Liu X.M. and Huang S.P., 2017. Cyclostratigraphic analysis of magnetic records for orbital chronology of the Lower Cretaceous Xiagou Formation in Linze, northwestern China. Palaeogeogr. Palaeoclimatol. Palaeoecol., 481, 44–56
Google Scholar
Long X.Y., Ji J.F., Barron V. and Torrent J., 2016. Climatic thresholds for pedogenic iron oxides under aerobic conditions: Processes and their significance in paleoclimate reconstruction. Quat. Sci. Rev., 150, 264–277
Google Scholar
Ma M.M., He M., Liu X.M. and Che B.L., 2020. How long does iron oxide dissolution and transformation require under water-logged conditions? A perspective from agricultural activity. Earth Planet. Sci. Lett., 531, Art.No. 115958, DOI: https://doi.org/10.1016/j.epsl.2019.115958
Maher B.A., 1998. Magnetic properties of modern soils and Quaternary loessic paleosols: Paleoclimatic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol., 137, 25–54
Google Scholar
Maher B.A., Thompson R. and Zhou L.P., 1994. Spatial and temporal reconstructions of changes in the Asian palaeomonsoon: A new mineral magnetic approach. Earth Planet. Sci. Lett., 125, 461–471
Google Scholar
Mao X.G., Liu X.M., Retallack G., Shi Y.H. and Chen J.N., 2019. Paleosol recognition, pedotypes and palesol development sequences in Zhangye colorful hills,Gansu Province. Quat. Sci., 39, 429–437 (in Chinese)
Google Scholar
Maynard J.B., 1992. Chemistry of modern soils as a guide to interpreting Precambrian paleosols. J. Geol., 100, 279–289
Google Scholar
McLennan S.M., 1989. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. In: Lipin B.R. and McKay G.A. (Eds), Geochemistry and Mineralogy of Rare Earth Elements. De Gruyter, Berlin, Germany, 169–200
Google Scholar
Mehra O.P. and Jackson M.L., 1958. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner., 7, 317–327
Google Scholar
Prothero D.R. and Berggren W.A., 1992. Low-biomass vegetation in the Oligocene? In: Leopold E.B., Liu G. and Clay-Poole S. (Eds), Eocene-Oligocene Climatic and Biotic Evolution. Princeton University Press, Princeton, NJ, 399–420
Google Scholar
Robertson A.R., 1977. The CIE 1976 color-difference formulae. Color Res. Appl., 2, 7–11
Google Scholar
Robinson S.G., Oldfield F. and Thompson R., 1986. The late Pleistocene palaeoclimatic record of North Atlantic deep-sea sediments revealed by mineral-magnetic measurements. Phys. Earth Planet. Inter., 42, 22–47
Google Scholar
Schwertmann U., 1993. Relations between iron oxides, soil color, and soil formation. In: Bigham J.M. and Ciolkosz E.J. (Eds), Soil Color. Technical University Munich, Freising, Germany, 51–69
Google Scholar
Scheinost A.C., Chavernas A., Barrón V. and Torrent J., 1998. Use and limitations of second-derivative diffuse reflectance spectroscopy in the visible to near-infrared range to identify and quantify fe oxide minerals in soils. Clays Clay Miner., 5, 528–536
Google Scholar
Sheldon N.D., Retallack G.J. and Tanaka S., 2002. Geochemical climofunctions from North American soils and application to paleosols across the Eocene-Oligocene boundary in Oregon. J. Geol., 110, 687–696
Google Scholar
Singer M.J., Fine P., Verosub K.L. and Chadwick O.A., 1992. Time dependence of magnetic susceptibility of soil chronosequences on the California coast. Quat. Res., 37, 323–332
Google Scholar
Taylor S.R. and McLennan S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific, Oxford, U.K.
Google Scholar
Taylor S.R., McLennan S.M. and McCulloch M.T., 1983. Geochemistry of loess, continental crustal composition and crustal model ages. Geochim. Cosmochim. Acta. 47, 1897–1905
Google Scholar
Torrent J., Barrón V. and Liu Q. S., 2006. Magnetic enhancement is linked to and precedes hematite formation in aerobic soil. Geophys. Res. Lett., 33, 140–165
Google Scholar
Verosub K.L., Fine P., Singer M.J. and TenPas J., 1993. Pedogenesis and paleoclimate: Interpretation of the magnetic susceptibility record of Chinese loess-paleosol sequences. Geology, 21, 1011–1014
Google Scholar
Wolfe J.A., 1995. Paleoclimatic estimates from tertiary leaf assemblages. Annu. Rev. Earth Planet. Sci., 23, 119–142
Google Scholar
Xi D.P., Wan X.Q., Li G.B. and Li G., 2019. Cretaceous integrative stratigraphy and timescale of Sci. China-Earth Sci., 62, 256–286
Google Scholar
Xu Y.Q., Zhang X., Cao Y., Zhang G.H., Chen C.G. and Xian X. H., 2013. Improvement of total iron and ferrous by spectrophotometry. Res. Explor. Lab., 32, 29–31
Google Scholar
Yang S.L., Fang X.M., Li J.J., An Z.S., Chen S.Y. and Hitoshi F., 2001. Transformation functions of soil color and climate. Sci. China-Earth Sci., 44, 218–226
Google Scholar
Zhang W.G., Yu L.Z., Lu M., Zheng X.M., Ji J.F., Zhou L.M. and Wang X.Y., 2009. East Asian summer monsoon intensity inferred from iron oxide mineralogy in the Xiashu loess in southern China. Quat. Sci. Rev., 28, 345–353
Google Scholar
Zhao H., Sun Y.B. and Qiang X.K., 2017. Iron oxide characteristics of mid-Miocene Red Clay deposits on the western Chinese Loess Plateau and their paleoclimatic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol., 468, 162–172
Google Scholar
Zheng G.D., Fu B.H., Duan Y., Wang Q., Matsuo M. and Takano B., 2004. Iron speciation related to color of Jurassic sedimentary rocks in Turpan Basin, northwest China. J. Radioanal. Nucl. Chem., 261, 421–427
Google Scholar
Zhou L.P., Oldfield F., Wintle A.G., Robinson S.G. and Wang J.T., 1990. Partly pedogenic origin of magnetic variations in Chinese loess. Nature, 346, 737–739
Google Scholar
Zhu H.J., Chen J.F., Chen S.L. and He Y.G., 1992. Soil Geography. Higher Education Press, Beijing, China (in Chinese)
Google Scholar