Skip to main content

Relationship between soil magnetic susceptibility enhancement and precipitation in Cretaceous paleosols

Abstract

Magnetic susceptibility (MS) is widely used for paleoclimate reconstruction. In one of the previous studies, data from 12 locations of modern middle- and low-latitude soils revealed that MS increases with increasing precipitation from approximately 200 to 1000–1200 mm yr−1 and then decreases with further precipitation. However, as a result of diverse sediment sources from different locations, the MS value can deviate, affecting its relationship with the climate. Sediments of a section experience dry-wet contrast due to the migration of climate zones as a function of geological time, and form different soil types with various colors. If the sediments of a section have the same source material, different soil types in that section would enable us to explore the relationship between MS enhancement and precipitation using paleosols and to verify the previous results. Herein, we investigated Cretaceous variegated sediments in the Zhonggou and Xiagou Formations located in the Hexi Corridor of China. The rare earth and trace element analyses reveal that these sediments have the same source area. Environmental magnetism and geochemical methods reveal that the sedimentary environment of the yellowish-brown, red, and grayish-white sediments ranges from dry to wet. Precipitation reconstruction for the paleosols with a climate transfer function shows that MS increases with increasing precipitation up to approximately 800 ± 182 mm yr−1 and decreases with higher precipitation amounts. The changing pattern of MS is consistent with the previous results, but the inflection point in the MS vs. precipitation curve appears at slightly lower precipitation value. Thus, paleosol sequences are suited for the analysis of paleoprecipitation trends with the help of MS.

This is a preview of subscription content, access via your institution.

References

  • An Z.S., Kukla G.J., Porter S.C. and Xiao J.L., 1991. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years. Quat. Res., 36, 29–36

    Google Scholar 

  • Aniku J.R.F. and Singer M.J., 1990. Pedogenic iron oxide trends in a marine terrace chronosequence. Soil Sci. Soc. Am. J., 54, 147–152

    Google Scholar 

  • Ao H., Deng C.L., Dekkers M.J. and Liu Q.S., 2010. Magnetic mineral dissolution in Pleistocene fluvio-lacustrine sediments, Nihewan Basin (North China). Earth Planet. Sci. Lett., 292, 191–200

    Google Scholar 

  • Balsam W.L., Ellwood B.B., Ji J.F., Williams E.R., Long X.Y. and Hassani A.E., 2011. Magnetic susceptibility as a proxy for rainfall: Worldwide data from tropical and temperate climate. Quat. Sci. Rev., 30, 2732–2744

    Google Scholar 

  • Balsam W.L., Ji J.F., Renock D., Deaton B.C. and Williams E., 2014. Determining hematite content from NUV/Vis/NIR spectra: Limits of detection. Am. Mineral., 99, 2280–2291

    Google Scholar 

  • Bhatia M.R., 1985. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: Provenance and tectonic control. Sediment. Geol., 45, 97–113

    Google Scholar 

  • Bloemendal J. and Demenocal P.B., 1989. Evidence for a change in the periodicity of tropical climate cycles at 2.4 Myr from whole-core magnetic susceptibility measurements. Nature, 342, 897–900

    Google Scholar 

  • Che Y.J., Guan X.C., Wang S.J. and Wu R., 2020. Spatial analysis of annual precipitation lines of 800 mm in the Eastern Monsoom of China. Plateau Meteorol., 39, 997–1006 (in Chinese)

    Google Scholar 

  • Chen J., An Z.S. and Head J., 1999. Variation of Rb/Sr ratios in the loess-paleosol sequences of central China during the last 130,000 years and their implications for monsoon paleoclimatology. Quat. Res., 51, 215–219

    Google Scholar 

  • Chen J., Ji J.F., Balsam W.L., Chen Y., Liu L.W. and An Z.S., 2002. Characterization of the Chinese loess-paleosol stratigraphy by whiteness measurement. Palaeogeogr. Palaeoclimatol. Palaeoecol., 183, 287–297

    Google Scholar 

  • Chen J. and Li G.J., 2011. Geochemical studies on the source region of Asian dust. Sci. China-Earth Sci., 54, 1279–1301

    Google Scholar 

  • Chen J.H. and Yang H.R., 1996. Geological development of the northwest China basins during the Mesozoic and Cenezoic. In: Zhiyi Z. and Dean W.T. (Eds), Phanerozoic Geology of Northwest China. Science Press, Beijing, China, 39–62

    Google Scholar 

  • Chen J.S., Liu X.M., Kravchinsky V.A., Lü B. and Chen Q., 2016. Post-depositional forcing of magnetic susceptibility variations at Kurtak section, Siberia. Quat. Int., 418, 2–9

    Google Scholar 

  • Chen J.S., Liu X.M. and Liu X.J., 2019. Sedimentary dynamics and climatic implications of Cretaceous loess-like red beds in the Lanzhou basin, northwest China. J. Asian Earth Sci., 180, Art.No. 103865, DOI: https://doi.org/10.1016/j.jseaes.2019.05.010

  • Collinson D.W., 1968. An estimate of the haematite content of sediments by magnetic analysis. Earth Planet. Sci. Lett., 4, 417–421

    Google Scholar 

  • Condie K.C., 1991. Another look at rare earth elements in shales. Geochim. Cosmochim. Acta., 55, 2527–2531

    Google Scholar 

  • Dasch E.J., 1969. Strontium isotopes in weathering profiles, deep-sea sediments, and sedimentary rocks. Geochim. Cosmochim. Acta., 33, 1521–1552

    Google Scholar 

  • Deaton B.C. and Balsam W.L., 1991. Visible spectroscopy; a rapid method for determining hematite and goethite concentration in geological materials. J. Sediment. Res., 61, 628–632

    Google Scholar 

  • Delgado L., Batezelli A., Ladeira F.S.B. and Luna J., 2019. Paleoenvironmental and paleoclimatic interpretation of the Late Cretaceous Marília Formation (Brazil) based on paleosol geochemistry. Catena, 180, 365–382

    Google Scholar 

  • Deng C.L., Zhu R.X., Jackson M.J., Verosub K.L. and Singer M.J., 2001. Variability of the temperature-dependent susceptibility of the Holocene eolian deposits in the Chinese loess plateau: A pedogenesis indicator. Phys. Chem. Earth A, 26, 873–878

    Google Scholar 

  • Ding Z.L., Sun J.M., Yang S.L. and Liu T.S., 2001a. Geochemistry of the Pliocene red clay formation in the Chinese Loess Plateau and implications for its origin, source provenance and paleoclimate change. Geochim. Cosmochim. Acta., 65, 901–913

    Google Scholar 

  • Ding Z.L., Yang S.L., Sun J.M. and Liu T.S., 2001b. Iron geochemistry of loess and red clay deposits in the Chinese Loess Plateau and implications for long-term Asian monsoon evolution in the last 7.0 Ma. Earth Planet. Sci. Lett., 185, 99–109

    Google Scholar 

  • Dunlop D.J. and Özdemir Ö., 1997. Rock Magnetism: Fundamentals and Frontiers. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Ferrat M., Weiss D.J., Strekopytov S., Dong S.F., Chen H.Y., Najorka J., Sun Y.B., Gupta S., Tada R. and Sinha R., 2011. Improved provenance tracing of Asian dust sources using rare earth elements and selected trace elements for palaeomonsoon studies on the eastern Tibetan Plateau. Geochim. Cosmochim. Acta., 75, 6374–6399

    Google Scholar 

  • Fine P., Verosub K. L. and Singer M. J., 1995. Pedogenic and lithogenic contributions to the magnetic susceptibility record of the Chinese loess/palaeosol sequence. Geophys. J. Int., 122, 97–107

    Google Scholar 

  • Frost G.M., Coe R.S., Meng Z.F., Peng Z.L., Chen Y., Courtillot V., Peltzer G., Tapponnier P. and Avouac J.-P., 1995. Preliminary early Cretaceous paleomagnetic results from the Gansu Corridor, China. Earth Planet. Sci. Lett., 129, 217–232

    Google Scholar 

  • Guo Z.T., Biscaye P., Wei L.Y., Chen X.H., Peng S.Z. and Liu T.S., 2000. Summer monsoon variations over the last 1.2 Ma from the weathering of loess-soil sequences in China. Geophys. Res. Lett., 27, 1751–1754

    Google Scholar 

  • Guo Z.T., Ruddiman W.F., Hao Q.Z., Wu H.B., Qiao Y.S., Zhu R.X., Peng S.Z., Wei J.J., Yuan B.Y. and Liu T.S., 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416, 159–163

    Google Scholar 

  • Hao Q.Z., Guo Z.T., Qiao Y.S., Xu B. and Oldfield F., 2010. Geochemical evidence for the provenance of middle Pleistocene loess deposits in southern China. Quat. Sci. Rev., 29, 3317–3326

    Google Scholar 

  • Harnois L., 1988. The CIW index: A new chemical index of weathering. Sediment. Geol., 55, 319–322

    Google Scholar 

  • Hasegawa H., Tada R., Jiang X., Suganuma Y., Imsamut S., Charusiri P., Ichinnorov N. and Yondon K., 2012. Drastic shrinking of the Hadley circulation during the mid-Cretaceous supergreenhouse. Clim. Past, 8, 1323–1337

    Google Scholar 

  • Heller F. and Liu T.S., 1984. Magnetism of Chinese loess deposits. Geophys. J. R. Astron. Soc., 77, 125–141

    Google Scholar 

  • Heller F., Shen C.D., Beer J., Liu X.M., Liu T.S., Bronger A., Suter M. and Bonani G., 1993. Quantitative estimates of pedogenic ferromagnetic mineral formation in Chinese loess and palaeoclimatic implications. Earth Planet. Sci. Lett., 114, 385–390

    Google Scholar 

  • Hu F.G. and Yang X.P., 2016. Geochemical and geomorphological evidence for the provenance of aeolian deposits in the Badain Jaran Desert, northwestern China. Quat. Sci. Rev., 131, 179–192

    Google Scholar 

  • Ji J.F., Balsam W.L. and Chen J., 2001. Mineralogic and climatic interpretations of the Luochuan loess section (China) based on diffuse reflectance spectrophotometry. Quat. Res., 56, 23–30

    Google Scholar 

  • Jiang X.S., Pan Z.X., Xu J.S., Li X.Y., Xie G.G. and Xiao Z.J., 2008. Late Cretaceous aeolian dunes and reconstruction of palaeo-wind belts of the Xinjiang Basin, Jiangxi Province, China. Palaeogeogr. Palaeoclimatol. Palaeoecol., 257, 58–66

    Google Scholar 

  • King J.W. and Channell J.E.T., 1991. Sedimentary magnetism, environmental magnetism, and magnetostratigraphy. Rev. Geophys., 29, 358–370

    Google Scholar 

  • Lepre C.J., 2019. Constraints on Fe-oxide formation in monsoonal Vertisols of Pliocene Kenya using rock magnetism and spectroscopy. Geochem. Geophys. Geosyst., 20, 4998–5013

    Google Scholar 

  • Li X.J., Zan J.B., Yang R.S., Fang X.M. and Yang S.L., 2020. Grain-size-dependent geochemical characteristics of Middle and Upper Pleistocene loess sequences from the Junggar Basin: Implications for the provenance of Chinese eolian deposits. Palaeogeogr. Palaeoclimatol. Palaeoecol., 538, Art.No. 109458, DOI: https://doi.org/10.1016/j.palaeo.2019.109458

  • Liu Q.S., Deng C.L., Yu Y.J., Torrent J., Jackson M.J., Banerjee S.K. and Zhu R.X., 2005. Temperature dependence of magnetic susceptibility in an argon environment: Implications for pedogenesis of Chinese loess/palaeosols. Geophys. J. Int., 161, 102–112

    Google Scholar 

  • Liu Q.S., Roberts A.P., Larrasoaña J.C., Banerjee S.K., Guyodo Y., Tauxe L. and Oldfield F., 2012. Environmental magnetism: Principles and applications. Rev. Geophys., 50, Art.No. RG4002, DOI: https://doi.org/10.1029/2012RG000393

  • Liu Z., Liu X.M. and Huang S.P., 2017. Cyclostratigraphic analysis of magnetic records for orbital chronology of the Lower Cretaceous Xiagou Formation in Linze, northwestern China. Palaeogeogr. Palaeoclimatol. Palaeoecol., 481, 44–56

    Google Scholar 

  • Long X.Y., Ji J.F., Barron V. and Torrent J., 2016. Climatic thresholds for pedogenic iron oxides under aerobic conditions: Processes and their significance in paleoclimate reconstruction. Quat. Sci. Rev., 150, 264–277

    Google Scholar 

  • Ma M.M., He M., Liu X.M. and Che B.L., 2020. How long does iron oxide dissolution and transformation require under water-logged conditions? A perspective from agricultural activity. Earth Planet. Sci. Lett., 531, Art.No. 115958, DOI: https://doi.org/10.1016/j.epsl.2019.115958

  • Maher B.A., 1998. Magnetic properties of modern soils and Quaternary loessic paleosols: Paleoclimatic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol., 137, 25–54

    Google Scholar 

  • Maher B.A., Thompson R. and Zhou L.P., 1994. Spatial and temporal reconstructions of changes in the Asian palaeomonsoon: A new mineral magnetic approach. Earth Planet. Sci. Lett., 125, 461–471

    Google Scholar 

  • Mao X.G., Liu X.M., Retallack G., Shi Y.H. and Chen J.N., 2019. Paleosol recognition, pedotypes and palesol development sequences in Zhangye colorful hills,Gansu Province. Quat. Sci., 39, 429–437 (in Chinese)

    Google Scholar 

  • Maynard J.B., 1992. Chemistry of modern soils as a guide to interpreting Precambrian paleosols. J. Geol., 100, 279–289

    Google Scholar 

  • McLennan S.M., 1989. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. In: Lipin B.R. and McKay G.A. (Eds), Geochemistry and Mineralogy of Rare Earth Elements. De Gruyter, Berlin, Germany, 169–200

    Google Scholar 

  • Mehra O.P. and Jackson M.L., 1958. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner., 7, 317–327

    Google Scholar 

  • Prothero D.R. and Berggren W.A., 1992. Low-biomass vegetation in the Oligocene? In: Leopold E.B., Liu G. and Clay-Poole S. (Eds), Eocene-Oligocene Climatic and Biotic Evolution. Princeton University Press, Princeton, NJ, 399–420

    Google Scholar 

  • Robertson A.R., 1977. The CIE 1976 color-difference formulae. Color Res. Appl., 2, 7–11

    Google Scholar 

  • Robinson S.G., Oldfield F. and Thompson R., 1986. The late Pleistocene palaeoclimatic record of North Atlantic deep-sea sediments revealed by mineral-magnetic measurements. Phys. Earth Planet. Inter., 42, 22–47

    Google Scholar 

  • Schwertmann U., 1993. Relations between iron oxides, soil color, and soil formation. In: Bigham J.M. and Ciolkosz E.J. (Eds), Soil Color. Technical University Munich, Freising, Germany, 51–69

    Google Scholar 

  • Scheinost A.C., Chavernas A., Barrón V. and Torrent J., 1998. Use and limitations of second-derivative diffuse reflectance spectroscopy in the visible to near-infrared range to identify and quantify fe oxide minerals in soils. Clays Clay Miner., 5, 528–536

    Google Scholar 

  • Sheldon N.D., Retallack G.J. and Tanaka S., 2002. Geochemical climofunctions from North American soils and application to paleosols across the Eocene-Oligocene boundary in Oregon. J. Geol., 110, 687–696

    Google Scholar 

  • Singer M.J., Fine P., Verosub K.L. and Chadwick O.A., 1992. Time dependence of magnetic susceptibility of soil chronosequences on the California coast. Quat. Res., 37, 323–332

    Google Scholar 

  • Taylor S.R. and McLennan S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific, Oxford, U.K.

    Google Scholar 

  • Taylor S.R., McLennan S.M. and McCulloch M.T., 1983. Geochemistry of loess, continental crustal composition and crustal model ages. Geochim. Cosmochim. Acta. 47, 1897–1905

    Google Scholar 

  • Torrent J., Barrón V. and Liu Q. S., 2006. Magnetic enhancement is linked to and precedes hematite formation in aerobic soil. Geophys. Res. Lett., 33, 140–165

    Google Scholar 

  • Verosub K.L., Fine P., Singer M.J. and TenPas J., 1993. Pedogenesis and paleoclimate: Interpretation of the magnetic susceptibility record of Chinese loess-paleosol sequences. Geology, 21, 1011–1014

    Google Scholar 

  • Wolfe J.A., 1995. Paleoclimatic estimates from tertiary leaf assemblages. Annu. Rev. Earth Planet. Sci., 23, 119–142

    Google Scholar 

  • Xi D.P., Wan X.Q., Li G.B. and Li G., 2019. Cretaceous integrative stratigraphy and timescale of Sci. China-Earth Sci., 62, 256–286

    Google Scholar 

  • Xu Y.Q., Zhang X., Cao Y., Zhang G.H., Chen C.G. and Xian X. H., 2013. Improvement of total iron and ferrous by spectrophotometry. Res. Explor. Lab., 32, 29–31

    Google Scholar 

  • Yang S.L., Fang X.M., Li J.J., An Z.S., Chen S.Y. and Hitoshi F., 2001. Transformation functions of soil color and climate. Sci. China-Earth Sci., 44, 218–226

    Google Scholar 

  • Zhang W.G., Yu L.Z., Lu M., Zheng X.M., Ji J.F., Zhou L.M. and Wang X.Y., 2009. East Asian summer monsoon intensity inferred from iron oxide mineralogy in the Xiashu loess in southern China. Quat. Sci. Rev., 28, 345–353

    Google Scholar 

  • Zhao H., Sun Y.B. and Qiang X.K., 2017. Iron oxide characteristics of mid-Miocene Red Clay deposits on the western Chinese Loess Plateau and their paleoclimatic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol., 468, 162–172

    Google Scholar 

  • Zheng G.D., Fu B.H., Duan Y., Wang Q., Matsuo M. and Takano B., 2004. Iron speciation related to color of Jurassic sedimentary rocks in Turpan Basin, northwest China. J. Radioanal. Nucl. Chem., 261, 421–427

    Google Scholar 

  • Zhou L.P., Oldfield F., Wintle A.G., Robinson S.G. and Wang J.T., 1990. Partly pedogenic origin of magnetic variations in Chinese loess. Nature, 346, 737–739

    Google Scholar 

  • Zhu H.J., Chen J.F., Chen S.L. and He Y.G., 1992. Soil Geography. Higher Education Press, Beijing, China (in Chinese)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (Grant 41602190), the Special Project of Fujian Public Welfare Research Institute (2019R1002-5), and Project of Innovation Team of Fujian Normal University (IRTL1705).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiasheng Chen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Chen, J. & Xie, Q. Relationship between soil magnetic susceptibility enhancement and precipitation in Cretaceous paleosols. Stud Geophys Geod 65, 323–340 (2021). https://doi.org/10.1007/s11200-020-0576-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-020-0576-1

Keywords

  • Early Cretaceous
  • paleosol
  • magnetic susceptibility
  • precipitation
  • geochemistry