Aster R.C., Borchers B. and Thurber C.H., 2013. Parameter Estimation and Inverse Problems. Academic Press, Waltham, MA
Google Scholar
Avdeev D. and Avdeeva A., 2009. 3D magnetotelluric inversion using a limited-memory quasi-Newton optimization. Geophysics, 14, 45–57, DOI: https://doi.org/10.1190/1.3114023
Article
Google Scholar
Becker E.B., Carey G.F. and Oden J.T., 1981. Finite Elements: An Introduction. Prentice-Hall Inc., Englewood Cliffs, NJ
Google Scholar
Caldwell T.G., Bibby H. and Brown C., 2004. The magnetotelluric phase tensor. Geophys. J. Int., 158, 457–469, DOI: https://doi.org/10.1111/j.1365-246X.2004.02281.x
Article
Google Scholar
Calvetti D., Golub G.H. and Reichel L., 1999. Estimation of the L-curve via Lanczos bidiagonalization. BIT, 39, 603–619, DOI: https://doi.org/10.1023/A:1022383005969
Article
Google Scholar
Calvetti D., Morigi S., Reichel L. and Sgallari F., 2000. An L-ribbon for large underdetermined linear discrete ill-posed problems. Numer. Algorithms, 25, 89–107, DOI: https://doi.org/10.1023/A:1016656923184
Article
Google Scholar
Chauhan M.S., Fedi M. and Sen M.K., 2018. Gravity inversion by the multi-homogeneity depth estimation method for investigating salt domes and complex sources. Geophys. Prospect., 66, 175–191, DOI: https://doi.org/10.1111/1365-2478.12603
Article
Google Scholar
Chong E.K.P. and Zak S.H., 2013. An Introduction to Optimization. Fourth Edition. John Wiley & Sons, Hoboken, NJ
Google Scholar
Chung J., Nagy J.G. and O’Leary D.P., 2008. A weighted GCV method for Lanczos-hybrid regularization. Electron. Trans. Numer. Anal., 28, 149–167
Google Scholar
Dabaghi Sadr F., 2017. Evolution of the Tethyan Seaway During the Oligocene and Miocene: Constraints from Foraminiferal Faunas of the Qom Formation, Iran. Ph.D. Thesis, University of Hamburg, Germany
Google Scholar
Daneshian J., 2007. Early Miocene benthic foraminifera and biostratigraphy of the Qom Formation, Deh Namak, Central Iran. J. Asian. Earth Sci., 29, 844–858, DOI: https://doi.org/10.1016/j.jseaes.2006.06.003
Article
Google Scholar
Farquharson C.G. and Oldenburg D.W., 2004. A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems. Geophys. J. Int., 156, 411–425
Article
Google Scholar
Furrer M.A. and Soder P.A., 1955. The Oligo-Miocene marine formation in the Qum Region (Iran). 4th World Petroleum Congress, WPC-6017, 267–277
Google Scholar
Ghaedrahmati R., Moradzadeh A., Fathianpour N. and Lee S.K., 2014. Investigating 2-D MT inversion codes using real field data. Arab. J. Geosci., 7, 2315–2328, DOI: https://doi.org/10.1007/s12517-013-0869-6
Article
Google Scholar
Guoqiang X., Shaonan Z., Zhongdong L., Lailiang S. and Huimin L., 2007. Carbonate sequence stratigraphy of a Back-Arc Basin: A case study of the Qom Formation in the Kashan Area, Central Iran. Acta. Geol. Sin., 81, 488–500, DOI: https://doi.org/10.1111/j.1755-6724.2007.tb00972.x
Article
Google Scholar
Haber E., Ascher U.M. and Oldenburg D., 2000. On optimization techniques for solving nonlinear inverse problems. Inverse Probl., 16, 1263–1280, DOI: https://doi.org/10.1088/0266-5611/16/5/309
Article
Google Scholar
Kao D. and Orr D., 1982. Magnetotelluric studies in the Market Weighton area of eastern England. Geophys. J. Int., 70, 323–337, DOI: https://doi.org/10.1111/j.1365-246X.1982.tb04970.x
Article
Google Scholar
Kaufman A.A. and Keller G.V., 1981. The Magnetotelluric Sounding Method. Elsevier Scientific Publ. Co., New York, NY
Google Scholar
Lilley F.E.M., 1976. Diagrams for magnetotelluric data. Geophysics, 41, 766–770, DOI: https://doi.org/10.1190/1.1440648
Article
Google Scholar
Marchetti P., Coraggio F., Gabbriellini G. and Fedi M., 2014. Large-scale 3D gravity data space inversion in hydrocarbon exploration. SEG Technical Program Expanded Abstracts 2014, DOI: https://doi.org/10.1190/segam2014-1078.1
Marti A., Queralt P. and Ledo J., 2009. WALDIM: A code for the dimensionality analysis of magnetotelluric data using the rotational invariants of the magnetotelluric tensor. Comput. Geosci., 35, 2295–2303, DOI: https://doi.org/10.1016/j.cageo.2009.03.004
Article
Google Scholar
Matsuo K. and Negi T., 1999. Oil exploration in difficult Minami-Noshiro area-park two: magnetotelluric survey. The Leading Edge, 18, 1411–1413, DOI: https://doi.org/10.1190/1.1438236
Article
Google Scholar
Menke W., 2012. Geophysical Data Analysis Discrete Inverse Theory. Third Edition. Academic Press Inc., SanDiego, CA
Google Scholar
Moghadasi M., Nejati Kalateh A. and Rezaie M., 2019. Automatic estimation of regularization parameter by active constraint balancing method for 3D inversion of gravity data. J. Min. Environ., 10, 357–364
Google Scholar
Nemeth T., Normark E. and Qin F., 1997. Dynamic smoothing in crosswell traveltime tomography. Geophysics, 62, 168–176
Article
Google Scholar
NIOC, 2012. Kashan, Iran, MIT Exploration Result Report. National Iranian Oil Company, Tehran, Iran
Google Scholar
Nocedal J. and Wright S.J., 2006. Numerical Optimization. Second Edition. Springer-Verlag, Berlin, Germany
Google Scholar
Paige C.C. and Saunders M.A., 1982. LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw., 8, 43–71
Article
Google Scholar
Paoletti V., Hansen P.C., Hansen M.F. and Fedi M., 2014. A computationally efficient tool for assessing the depth resolution in large-scale potential-field inversion. Geophysics, 79, A33–A38, DOI: https://doi.org/10.1190/geo2014-0017.1
Article
Google Scholar
Reddy I.K., Rankin D. and Phillips R.J., 1977. Three-dimensional modeling in magnetotelluric and magnetic variational sounding. Geophys. J. Int., 51, 313–325
Article
Google Scholar
Reynolds J.M., 2011. An Introduction to Applied and Environmental Geophysics. Second Edition. John Wiley & Sons, Hoboken, NJ
Google Scholar
Rodi W.L., 1976. A technique for improving the accuracy of finite element solutions for magnetotelluric data. Geophys. J. R. Astron. Soc., 44, 483–506
Article
Google Scholar
Rodi W.L. and Mackie R.L., 2001. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics, 66, 174–187
Article
Google Scholar
Sarvandani M.M., Kalateh A.N., Unsworth M. and Majidi A., 2017. Interpretation of magnetotelluric data from the Gachsaran oil field using sharp boundary inversion. J. Petrol. Sci. Eng., 149, 25–39, DOI: https://doi.org/10.1016/j.petrol.2016.10.019
Article
Google Scholar
Sasaki Y., 1989, Two-dimensional joint inversion of magnetotelluric and dipole-dipole resistivity data. Geophysics, 54, 254–262
Article
Google Scholar
Sasaki Y., 2001. Full 3D inversion of electromagnetic data on PC. J. Appl. Geophys., 46, 45–54, DOI: https://doi.org/10.1016/S0926-9851(00)00038-0
Article
Google Scholar
Siripunvaraporn W., 2012. Three-dimensional magnetotelluric inversion: an introductory guide for developers and users. Surv. Geophys., 33, 5–27, DOI: https://doi.org/10.1007/s10712-011-9122-6
Article
Google Scholar
Siripunvaraporn W. and Egbert G., 2007. Data space conjugate gradient inversion for 2-D magnetotelluric data. Geophys. J. Int., 170, 986–994, DOI: https://doi.org/10.1111/j.1365-246X.2007.03478.x
Article
Google Scholar
Siripunvaraporn W., Egbert G., Lenbury Y. and Uyeshima M., 2005. Three-dimensional magnetotelluric: data space method. Phys. Earth Planet. Inter., 150, 3–14, DOI: https://doi.org/10.1016/j.pepi.2004.08.023
Article
Google Scholar
Soder P.A., 1959. Detailed Investigations on the Marine Formation of Qom: 2nd Report. National Iranian Oil Company, Tehran, Iran
Google Scholar
Stöcklin J., 1971. Stratigraphic Lexicon of Iran. Ministry of Industry and Mines, Geological Survey of Iran, Teheran, Iran
Google Scholar
Swift C.M., 1967. A Magnetotelluric Investigation of Electrical Conductivity Anomaly in the Southwestern United States. PhD Thesis, Massachusetts Institute of Technology, Cambridge, MA
Google Scholar
Tikhonov A.N. and Arsenin V.Y., 1977. Solution of Ill-Posed Problems. Wiley, NewYork, NY
Google Scholar
Uchida T., Lee T.J., Honda M. and Andan A., 2002. 2-D and 3-D interpretation of magnetotelluric data in the Bajawa geothermal field, central Flores, Indonesia. Bull. Geol. Surv. Japan, 53, 265–283
Article
Google Scholar
Unsworth M., 2005. New developments in conventional hydrocarbon exploration with electromagnetic method. Can. Soc. Explor. Geophys. Rec., 30, 34–38
Google Scholar
Unsworth M. and Bedrosian P.A., 2004. Electrical resistivity structure at the SAFOD site from magnetotelluric exploration. Geophys. Res. Lett., 31, L12S05, DOI: https://doi.org/10.1029/2003GL019405
Article
Google Scholar
Van Beusekom A.E., Parker R.L., Bank R.E., Gill P.E. and Constable S., 2011. The 2-D magnetotelluric inverse problem solved with optimization. Geophys. J. Int., 184, 639–650, DOI: https://doi.org/10.1111/j.1365-246X.2010.04895.x
Article
Google Scholar
Wahba G., 1990. Spline Models for Observational Data. SIAM, Philadelphia, PA
Book
Google Scholar
Weaver J.T., Agarwal A.K. and Lilley F.E.M., 2000. Characterization of the magnetotelluric impedance tensor. Geophys. J. Int., 129, 133–142, DOI: https://doi.org/10.1046/j.1365-246x.2000.00089.x
Google Scholar
Xu X.-K., Liu S., Shi H.-X., Xu G.-Q. and Zhou W., 2009. The hydrocarbon geology conditions of Kashan area in central Iranian basin. J. Southwest Petrol. Univ., 7, 62–68, DOI: https://doi.org/10.3863/j.issn.1674-5086.2009.03.014
Google Scholar
Yi M-J., Kim J-H. and Chung S-H., 2003. Enhancing the resolving power of least-squares inversion with active constraint balancing. Geophysics, 68, 931–941, DOI: https://doi.org/10.1190/1.1581045
Article
Google Scholar
Zhang K., Dong H., Yan J.-Y., Lü Q.-T., Wei W.-B. and He Y.-X., 2013. A NLCG 3-D inversion method of magnetotellurics with parallel structure. Chinese J. Geophys., 56, 754–765, DOI: https://doi.org/10.1002/cjg2.20068
Article
Google Scholar
Zhang K., Wei W., Lu Q., Dong H. and Li Y., 2014. Theoretical assessment of 3-D magnetotelluric method for oil and gas exploration: Synthetic examples. J. Appl. Geophys., 106, 23–36, DOI: https://doi.org/10.1016/j.jappgeo.2014.04.003
Article
Google Scholar