Skip to main content

Comparison of three methods for computing the gravitational attraction of tesseroids at satellite altitude

Abstract

Global gravity modelling is one of the most important issues in geophysics and geodesy. Because a tesseroid model comprises the curvature of the Earth, the computation methods for the gravitational potential of tesseroids and its first-order derivatives in spherical coordinates are attracting great attention in recent years. In this paper we deal with the numerical evaluation of the radial component of the gravitational attraction generated by tesseroid masses at satellite height with the Gauss-Legendre quadrature (GLQ), the Taylor series expansion (TSE) and the prism approximation (PA) methods. Forward modelling of tesseroids of 1° × 1° and 5′ × 5′ are performed by three computation methods and the comparison between them are made in terms of computational efficiency and accuracy. The numerical results show that the GLQ of order 5 can provide the adequate accuracy for the gravity modelling of 1° × 1° tesseroids at satellite height. The GLQ of order 2 and TSE methods are superior to the PA approach in both computational accuracy and efficiency. The satellite height has important impact on the accuracy of the GLQ and TSE, whereas it has no effect on the PA method. In addition, we developed combined GLQ approach and combined TSE method, respectively, for global gravity modelling based on 1° × 1° and 5′ × 5′ tesseroids. Apart from the synthetic tesseroids, 1° × 1° data from the CRUST1.0 global crustal model and 5′ × 5′ rock-equivalent topographic data from the Earth2014 model are used to validate two combined methods. The numerical results show that these two combined methods can balance the computational accuracy and efficiency.

This is a preview of subscription content, access via your institution.

References

  • Arfken G.B. and Weber H.J., 2005. Mathematical Methods for Physicists. Sixth Edition. Elsevier — Academic Press, Burlington, MA

    Google Scholar 

  • Asgharzadeh M.F., von Frese R.R.B., Kim H.R., Leftwich T.E. and Kim J.W., 2007. Spherical prism gravity effects by Gauss-Legendre quadrature integration. Geophys. J. Int., 169, 1–11

    Article  Google Scholar 

  • Bezděk A. and Sebera J., 2013. Matlab script for 3D visualizing geodata on a rotating globe. Comput. Geosci., 56, 127–130

    Article  Google Scholar 

  • Deng X.L., Grombein T., Shen W.B., Heck B. and Seitz K., 2016. Corrections to “A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling” (Heck and Seitz, 2007) and “Optimized formulas for the gravitational field of a tesseroid” (Grombein et al., 2013). J. Geodesy, 90, 585–587

    Article  Google Scholar 

  • Deng X.L. and Shen W.B., 2019. Topographic effects up to gravitational curvatures of tesseroids: A case study in China. Stud. Geophys. Geod., 63, 345–366, DOI: https://doi.org/10.1007/s11200-018-0772-4

    Article  Google Scholar 

  • Grombein T., Seitz K. and Heck B., 2010. Modelling topographic effects in GOCE gravity gradients. In: Münch U. and Dransch W. (Eds), Geotechnologien Science Report, 17, 84–93, DOI: https://doi.org/10.2312/GFZ.gt.17.13

  • Grombein T., Seitz K. and Heck B., 2013. Optimized formulas for the gravitational field of a tesseroid. J. Geodesy, 87, 645–660

    Article  Google Scholar 

  • Heck B. and Seitz K., 2007. A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling. J. Geodesy, 81, 121–136

    Article  Google Scholar 

  • Hirt C. and Rexer M., 2015. Earth2014: 1 arc-min shape, topography, bedrock and ice-sheet models-available as gridded data and degree-10,800 spherical harmonics. Int. J. Appl. Earth Obs. Geoinf., 39, 103–112

    Article  Google Scholar 

  • Ku C.C., 1977. A direct computation of gravity and magnetic anomalies caused by 2- and 3-dimensional bodies of arbitrary shape and arbitrary magnetic polarization by equivalent-point method and a simplified cubic spline. Geophysics, 42, 610–622

    Article  Google Scholar 

  • Kuhn M. Featherstone W.E. and Kirby J.F., 2009. Complete spherical Bouguer gravity anomalies over Australia[J]. Aust. J. Earth Sci., 56, 213–223

    Article  Google Scholar 

  • Laske G., Masters G., Ma Z. and Pasyanos M., 2013. Update on CRUST1.0 — A 1-degree global model of Earth’s crust. Geophysical Research Abstracts, 15, EGU2013–2658

    Google Scholar 

  • Li X. and Chouteau M., 1998. Three-dimensional gravity modeling in all space. Surv. Geophys., 19, 339–368

    Article  Google Scholar 

  • Li Z., Hao T., Xu Y. and Xu Y., 2011. An efficient and adaptive approach for modeling gravity effects in spherical coordinates. J. Appl. Geophys., 73, 221–231

    Article  Google Scholar 

  • Lin M. and Denker H., 2019. On the computation of gravitational effects for tesseroids with constant and linearly varying density. J. Geodesy, 93, 723–747

    Article  Google Scholar 

  • Marotta A.M. and Barzaghi R., 2017. A new methodology to compute the gravitational contribution of a spherical tesseroid based on the analytical solution of a sector of a spherical zonal band. J. Geodesy, 91, 1207–1224

    Article  Google Scholar 

  • Marotta A.M., Seitz K., Barzaghi R., Grombein T. and Heck B., 2019. Comparison of two different approaches for computing the gravitational effect of a tesseroid. Stud. Geophys. Geod., 63, 321–344

    Article  Google Scholar 

  • Nagy D., Papp G. and Benedek J., 2000. The gravitational potential and its derivatives for the prism. J. Geodesy, 74, 552–560

    Article  Google Scholar 

  • Nagy D., Papp G. and Benedek J., 2002. Corrections to “The gravitational potential and its derivatives for the prism”. J. Geodesy, 76, 475–475

    Article  Google Scholar 

  • Novák P. and Grafarend E.W., 2005. Ellipsoidal representation of the topographical potential and its vertical gradient. J. Geodesy, 78, 691–706

    Article  Google Scholar 

  • Roussel C., Verdun J., Cali, J. and Masson F., 2015. Complete gravity field of an ellipsoidal prism by Gauss-Legendre quadrature. Geophys. J. Int., 203, 2220–2236, DOI: https://doi.org/10.1093/gji/ggv438

    Article  Google Scholar 

  • Shen W.B. and Deng X.L., 2016. Evaluation of the fourth order tesseroid formula and new combination approach to precisely determine gravitational potential. Stud. Geophys. Geod., 60, 583–607

    Article  Google Scholar 

  • Smith D.A., Robertson D.S. and Milbert D.G., 2001. Gravitational attraction of local crustal masses in spherical coordinates. J. Geodesy, 74, 783–795, DOI: https://doi.org/10.1007/s001900000142

    Article  Google Scholar 

  • Tsoulis D., Novák P. and Kadlec M., 2009. Evaluation of precise terrain effects using high-resolution digital elevation models. J. Geophys. Res.-Solid Earth, 114, B02404, DOI: https://doi.org/10.1029/2008JB005639

    Article  Google Scholar 

  • Uieda L., Barbosa V.C. and Braitenberg C., 2016. Tesseroids: Forward-modeling gravitational fields in spherical coordinates. Geophysics, 81, F41–F48

    Article  Google Scholar 

  • von Frese R.R., Hinze W.J., Braile L.W. and Luca A.J., 1981. Spherical-Earth gravity and magnetic anomaly modeling by Gauss-Legendre quadrature integration. J. Geophys., 49, 234–242

    Google Scholar 

  • Wild-Pfeiffer F., 2008. A comparison of different mass elements for use in gravity gradiometry. J. Geodesy, 82, 637–653

    Article  Google Scholar 

  • Yang M., Hirt C. and Pail R., 2020. TGF: A new MATLAB-based software for terrain-related gravity field calculations. Remote Sens., 12, ArtNo. 1063, DOI: https://doi.org/10.3390/rs12071063

  • Zhong Y., Ren Z., Chen C., Chen H., Yang Z. and Guo Z., 2019. A new method for gravity modeling using tesseroids and 2D Gauss-Legendre quadrature rule. J. Appl. Geophys., 164, 53–64

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the China Scholarship Council and Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoxi Chen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qiu, L., Chen, Z. Comparison of three methods for computing the gravitational attraction of tesseroids at satellite altitude. Stud Geophys Geod 65, 128–147 (2021). https://doi.org/10.1007/s11200-020-0149-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-020-0149-3

Keywords

  • Gauss-Legendre quadrature
  • tesseroid
  • Taylor series expansion
  • comparison