Skip to main content

Quality assessment of global gravity field models in coastal zones: A case study using astrogeodetic vertical deflections in Istanbul, Turkey

Abstract

We present the first high-precision astrogeodetic vertical deflection (VD) observations collected in Istanbul, Turkey, using a novel lightweight total station integrated with a charge-coupled device (CCD) camera, the QDaedalus system. The observed VDs are unique in that, they were measured for the first time in Istanbul, and they form Turkey’s first dense astrogeodetic network. To establish the Istanbul Astrogeodetic Network (IAN), we selected 30 benchmarks (BMs) with known geodetic coordinates. A total of 21 of these BMs are located in the coastal zone allowing us to investigate the quality of global gravity field models (GGFMs) along the coast of Istanbul. The standard deviations for our VDs are approximately ±0.20″which is commensurate with the VD accuracy of early studies assessing the QDaedalus observations. In particular, dedicated comparison measurements were conducted in two geographic regions—Munich and Istanbul—to control the accuracy of the VD measurements. Our new VD data set within the IAN was compared with predicted VDs from the Global Gravity Model plus (GGMplus) and the Earth Gravitational Model 2008 (EGM2008). The VD residuals between the QDaedalus observations, and predicted values from GGMplus and EGM2008 models tend to increase towards the coastlines, where discrepancies of several arcseconds were found. At 15 coastal BMs, the residuals in the N-S components exceed 2″ and reach values as large as 6″ while residuals in the E-W components exceeded 2″ at 3 BMs. We interpret these large differences as an indication of the current weaknesses in the GGF Ms, most likely reflecting errors in the altimetry-derived marine gravity measurements, which have been incorporated in the EGM2008 and GGMplus models, or the lack of coastal terrestrial gravity measurements, or both. We conclude that the astrogeodetic VDs observed by the QDaedalus are invaluable for independently assessing the quality of coastal-zone terrestrial gravity data sets and GGFMs.

This is a preview of subscription content, access via your institution.

References

  • Abele M., Balodis J., Janpaule I., Lasmane I., Rubans A. and Zariņš A., 2012. Digital zenith camera for vertical deflection determination. Geodesy Cartogr., 38(4), 123–129.

    Google Scholar 

  • Albayrak M. and Hirt C., 2018. Determining the Astrogeodetic Geoid Profile of the Munich Region Using the QDaedalus System. Final Report BIDEB 2214-A, The Scientific and Technological Research Council of Turkey (TUBITAK), Ankara, Turkey, 63 pp.

    Google Scholar 

  • Albayrak M., Hirt C., Guillaume S., Hauk M. and Halicioglu K., 2018. Testing the QDaedalus measurement system for astrogeodetic observation of the gravity field. Abstract #G51F-0534, American Geophysical Union, Fall Meeting 2018.

  • Albayrak M., Halicioglu K., Özlüdemir M.T., Basoglu B., Deniz R., Tyler A.R.B. and Aref M.M., 2019a. The use of the automated digital zenith camera system in Istanbul for the determination of astrogeodetic vertical deflection. Bol. Cienc. Geod, 25(4), e2019025, DOI: https://doi.org/10.1590/s1982-21702019000400025.

    Google Scholar 

  • Albayrak M., Hirt C., Guillaume S., Özlüdemir M.T., Halicioglu K. and Basoglu B., 2019b. New astrogeodetic observations of vertical deflections at the Istanbul astrogeodetic network demonstrate issues in global gravity models along coastlines. Abstract IUGG19-0060, 27th IUGG General Assembly, Montreal, Canada (https://www.czech-in.org/cmPortalV15/CM_W3_Searchable/iugg19/normal#!abstractdetails/0000697570).

  • Albayrak M., Özlüdemir M.T., Aref M.M. and Halicioglu K., 2020. Determination of Istanbul geoid using GNSS/levelling and valley cross levelling data. Geodesy Geodyn., DOI: https://doi.org/10.1016/j.geog.2020.01.003 (in press, https://www.sciencedirect.com/science/article/pii/S1674984720300173).

  • Andersen O.B. and Knudsen P., 2009. DNSC08 mean sea surface and mean dynamic topography models. J. Geophys. Res.-Oceans, 114, C11001, DOI: https://doi.org/10.1029/2008JC005179.

    Google Scholar 

  • Andersen O.B., Knudsen P. and Berry P.A., 2010. The DNSC08GRA global marine gravity field from double retracked satellite altimetry. J. Geodesy, 84, 191–199.

    Google Scholar 

  • Ayan T., Deniz R., Arslan E., Celik R.N., Denli H.H., Akyilmaz O., Ozsamh C., Özlüdemir M.T., Erol S., Erol B., Acar M., Mercan H. and Tekdal E., 2006. İstanbul GPS nirengi ağı (İGNA) 2005–2006 yenileme Ölçü ve değerlendirmesi (Istanbul GPS Triangulation Network (IGTN) 2005–2006 Re-Measurements and Data Processing). Istanbul Technical University Report 2005/3123, Vol. 1. Istanbul, Turkey, 186 pp. (in Turkish).

  • Barzaghi R., Borghi A., Carrion D. and Sona G., 2007. Refining the estimate of the italian quasigeoid. Boll Geod Sci. Affin., 66, 145–160.

    Google Scholar 

  • Bürki B., 1989. Integrale Schwerefeldbestimmung in der Ivrea-Zone und deren geophysikalische Interpretation. Geodätischgeophysikalische Arbeiten in der Schweiz, Nr. 40, Swiss Geodetic Commission, Zürich, Switzerland (in German).

    Google Scholar 

  • Bürki B., Müller A. and Kahle H.G., 2004. DIADEM: The new digital astronomical deflection measuring system for high-precision measurements of deflections of the vertical at ETH Zurich. In: Marti U., Hirt C., Müller A. and Bürki A. (Eds), CHGeoid2003. Swisstopo, Bern, Switzerland.

    Google Scholar 

  • Bürki B., Guillaume S., Sorber P. and Oesch H.P., 2010. DAEDALUS: A versatile usable digital clip-on measuring system for total stations. In: Mautz R., Kunz M. and Ingensand H. (Eds), 2010 International Conference on Indoor Positioning and Indoor Navigation, IEEE, New York, DOI: https://doi.org/10.1109/IPIN.2010.5646270.

    Google Scholar 

  • Ceylan A., 2009. Determination of the deflection of vertical components via GPS and leveling measurement: A case study of a GPS test network in Konya, Turkey. Sci. Res. Essays, 4, 1438–1444.

    Google Scholar 

  • Charalampous E., Psimoulis P., Guillaume S., Spiridonakos M., Klis R., Bürki B., Rothacher M., Chatzi E., Luchsinger R. and Feltrin G., 2015. Measuring sub-mm structural displacements using QDaedalus: a digital clip-on measuring system developed for total stations. Appl. Geomatics, 7, 91–101.

    Google Scholar 

  • Featherstone W.E. and Lichti D.D., 2009. Fitting gravimetric geoid models to vertical deflections. J. Geodesy, 83, 583–589.

    Google Scholar 

  • Featherstone W.E. and Rüeger J.M., 2000. The importance of using deviations of the vertical in the reduction of terrestrial survey data to a geocentric datum. Trans-Tasman Surv., 1, 46–61. DOI: https://doi.org/10.1080/00050326.2000.10440341.

    Google Scholar 

  • Featherstone W.E., Kirby J.F., Hirt C., Filmer M.S., Claessens S.J., Brown N.J., Hu G. and Johnston G.M., 2011. The AUSGeoid09 model of the Australian height datum. J. Geodesy, 85, 133–150.

    Google Scholar 

  • Featherstone W.E., McCubbine J.C., Brown N.J., Claessens S.J., Filmer M.S. and Kirby J.F., 2017. The first Australian gravimetric quasigeoidmodel with location-specific uncertainty estimates. J. Geodesy, 92, 149–168.

    Google Scholar 

  • Gholamrezaie E., Scheck-Wenderoth M., Heidbach O. and Strecker M.R., 2019. 3-D crustal density model of the Sea of Marmara. Solid Earth, 10, 785–807.

    Google Scholar 

  • Gruber T., 2009. Evaluation of the EGM2008 gravity field by means of GPS levelling and sea surface topography solutions. Newton’s Bulletin, 4, 3–17.

    Google Scholar 

  • Guillaume S., Bürki B., Griffet S. and Mainaud Durand H., 2012. QDaedalus: Augmentation of total stations by CCD sensor for automated contactless high-precision metrology. FIG working Week 2012 (http://fig.net/resources/proceedings/fig_proceedings/fig2012/papers/ts09i/TS09I_guillaume_buerki_et_al_6002.pdf).

  • Guillaume S., 2015. Determination of a Precise Gravity Field for the CLIC Feasibility Studies. Ph.D. Thesis Nr. 22590. ETH Zurich, Switzerland.

    Google Scholar 

  • Guillaume S., Clerc J. and Bürki B., 2015. QDaedalus Digital Clip-on Measuring System for Total Station User Manual. Institute of Geodesy and Photogrammetry, Geodesy and Geodynamics Laboratory, ETH Zurich, Switzerland.

    Google Scholar 

  • Guillaume S., Clerc J., Ray J. and Kistler M., 2016. Contribution of the image-assisted theodolite system QDaedalus to geodetic static and dynamic deformation monitoring. 3rd Joint International Symposium on Deformation Monitoring (JISDM). International Federation of Surveyors, Copenhagen, Denmark (https://www.fig.net/resources/proceedings/2016/2016_03_jisdm_pdf/nonreviewed/JISDM_2016_submission_66.pdf).

    Google Scholar 

  • Halicioglu K., Deniz R. and Özener H., 2016. Digital astro-geodetic camera system for the measurement of 579 the deflections of the vertical: Tests and results. Int. J. Digit. Earth, 9, 914–580.

    Google Scholar 

  • Hauk M., Hirt C. and Ackermann C., 2017. Experiences with the QDaedalus system for astrogeodetic determination of deflections of the vertical. Surv. Rev., 49, 294–301.

    Google Scholar 

  • Hirt C., 2004. Entwicklung und erprobung eines digitalen zenitkamerasystems für die hochpräzise Lotabweichungsbestimmung. Ph.D. Thesis. University of Hannover, Hannover, Germany (in German).

    Google Scholar 

  • Hirt C., 2006. Monitoring and analysis of anomalous refraction using a digital zenith camera system. Astron. Astrophys., 459, 283–290.

    Google Scholar 

  • Hirt C. and Bürki B., 2003. The digital zenith camera-a new high-precision and economic astrogeodetic observation system for real-time measurement of deflections of the vertical. In: Tziavos I.N. (Ed.), Gravity and Geoid 2002. Ziti Editions, Thessaloniki, Greece, 161–166.

    Google Scholar 

  • Hirt C. and Bürki B., 2006. Status of geodetic astronomy at the beginning of the 21st century. In: Hirt C. (Ed.), Festschrift Univ.- Prof. Dr. — Ing. Prof. h.c. Günter Seeber anlässlich Scines 65. Geburtstages und der Verabschiedung in den Ruhestand. Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik an der Universität Hannover 258, 81–99.

  • Hirt C. and Flury J., 2008. Astronomical-topographic levelling using high-precision astrogeodetic vertical 597 deflections and digital terrain model data. J. Geodesy, 82, 231–248.

    Google Scholar 

  • Hirt C. and Seeber G., 2008. Accuracy analysis of vertical deflection data observed with the Hannover Digital Zenith Camera System TZK2-D. J. Geodesy, 82, 347–356. DOI: https://doi.org/10.1007/s00190-007-0184-7.

    Google Scholar 

  • Hirt C. and Wildermann E., 2018. Reactivation of the Venezuelan vertical deflection data set from classical astrogeodetic observations. J. South Amer. Earth Sci., 85, 97–107.

    Google Scholar 

  • Hirt C., Marti U., Bürki B. and Featherstone W.E., 2010a. Assessment of EGM2008 in Europe using accurate astrogeodetic vertical deflections and omission error estimates from SRTM/DTM2006.0 residual terrain model data. J. Geophys. Res.-Solid Earth, 115, B10404.

    Google Scholar 

  • Hirt C., Bürki B., Somieski A. and Seeber G., 2010b. Modern determination of vertical deflections using digital zenith cameras. J. Surv. Eng.-ASCE, 136, 1–12.

    Google Scholar 

  • Hirt C., Guillaume S., Wisbar A., Bürki B. and Sternberg H., 2010c. Monitoring of the refraction coefficient in the lower atmosphere using a controlled setup of simultaneous reciprocal vertical angle measurements. J. Geophys. Res.-Atmos., 115, D21102.

    Google Scholar 

  • Hirt C., Bürki B., Guillaume S. and Featherstone W.E., 2010d. Digital Zenith cameras — State-of-the-art astrogeodetic technology for Australian Geodesy. In: Proceedings of the FIG Congress 2010. International Federation of Surveyors, Copenhagen, Denmark (https://www.fig.net/resources/proceedings/fig_proceedings/fig2010/papers/fs03h/fs03h_hirt_burki_et_al_3831.pdf).

    Google Scholar 

  • Hirt C., Schmitz M., Feldmann-Westendorff U., Wübbena G., Jahn CH. and Seeber G., 2011. Mutual validation of GNSS height measurements and high-precision geometric-astronomical leveling. GPSSolut., 15, 149–159.

    Google Scholar 

  • Hirt C., Claessens S., Fecher T., Kuhn M., Pail R. and Rexer M., 2013. New ultrahigh-resolution picture of Earth’s gravity field. Geophys. Res. Lett., 40, 4279–4283.

    Google Scholar 

  • Hirt C., Papp G., Pall A., Benedek J. and Szucs E., 2014. Expected accuracy of tilt measurements on a novel hexapod-based Digital Zenith Camera System: a Monte-Carlo simulation study. Meas. Sci. Technol, 25, 085004, DOI: https://doi.org/10.1088/0957-0233/25/8/085004.

    Google Scholar 

  • Ince E.S., Barthelmes F., Reiβland S., Elger K., FÖrste C., Flechtner F. and Schuh H., 2019. ICGEM — 15 years of successful collection and distribution of global gravitational models, associated services, and future plans. Earth Syst. Sci. Data, 11, 647–674.

    Google Scholar 

  • Jekeli C., 1999. An analysis of vertical deflections derived from high-degree spherical harmonic models. J. Geodesy, 73, 10–22.

    Google Scholar 

  • Kudrys J., 2007. Automatic determination of vertical deflection components from GPS and zenithal star observations. Acta Geodyn. Geomat., 4, 169–172.

    Google Scholar 

  • MÖnicke H.J., 1981. Interpretation astronomisch-geodätischer Lotabweichungen im Oberrheingraben. Deutsche Geodätische Kommission C265. Bayerische Akademie der Wissenschaften, München, Germany (in German).

  • Müller A., Bürki B., Kahle H.G, Higrt C. and Marti U., 2004. First results from new high-precision measurements of deflections of the vertical in Switzerland. In: Jekeli C., Bastos L. and Fernandes J. (Eds), Gravity, Geoid and Space Missions. International Association of Geodesy Symposia 129. Springer-Verlag, Berlin, Germany, 143–148.

    Google Scholar 

  • Oktay F.Y., GÖkaşan E., Sakmç M., Yaltirak C., İmren C. and Demirbağ E., 2002. The effects of the North Gravity, geoid and space missions Anatolian Fault Zone on the latest connection between Black Sea and Sea of Marmara. Mar. Geol., 190, 367–382.

    Google Scholar 

  • OpenStreetMap, 2019. OpenStreetMap Wiki (http://wiki.openstreetmap.org/wiki/Main_Page).

  • Özlüdemir M.T., 2015. Astro-jeodezik ve GNSS/Nivelman verilerinin entegrasyonu ile yerel geoit modellemesi (Local geoid modelling using integrated astro-geodetic and GNSS/Levelling data). TUBITAK 1001 Project Final Report No. 115Y237. The Scientific and Technological Research Council of Turkey (TUBITAK), Ankara, Turkey (in Turkish).

    Google Scholar 

  • Özyasar M. and Özlüdemir M.T., 2011. The contribution of engineering surveys by means of GPS to the determination of crustal movements in Istanbul. Nat. Hazards Earth Syst. Sci, 11, 1705–1713.

    Google Scholar 

  • Pavlis N.K., Holmes S.A., Kenyon S.C. and Factor J.K., 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res.-Solid Earth, 111, B04406, DOI: https://doi.org/10.1029/2011JB008916.

    Google Scholar 

  • Pavlis N.K., Holmes S.A., Kenyon S.C. and Factor J.K., 2013 The development and evaluation of the Earth Gravitational Model 2008 (EGM2008) (vol 117, B04406, 2012). J. Geophys. Res.-Solid Earth, 118, 2633–2633, DOI: https://doi.org/10.1002/jgrb.50167.

    Google Scholar 

  • Pick M., Pícha J. and Vyskočil V., 1973. Theory of Earth’s Gravity Field. Elsevier Scientific Publishing Company, Amsterdam, London, New York.

    Google Scholar 

  • Robbins A.R., 1951. Deviation of the vertical. Empire Surv. Rev., 11, 28–36.

    Google Scholar 

  • Sandwell D.T. and Smith W.H., 2009. Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge segmentation versus spreading rate. J. Geophys. Res.-Solid Earth, 114, B01411, DOI: https://doi.org/10.1029/2008JB006008.

    Google Scholar 

  • Sandwell D., Garcia E., Soofi K., Wessel P., Chandler M. and Smith W.H.F., 2013. Toward 1-mGal accuracy in global marine gravity from CryoSat-2, Envisat, and Jason-1. The Leading Edge, 32, 892–899, DOI: https://doi.org/10.1190/tle32080892.1.

    Google Scholar 

  • Schack P., Hirt C., Hauk M., Featherstone W.E., Lyon T.J. and Guillaume S., 2018. A high-precision digital astrogeodetic traverse in an area of steep geoid gradients close to the coast of Perth, Western Australia. J. Geodesy, 92, 1143–1153.

    Google Scholar 

  • Seeber G. and Torge W., 1985. Zum Einsatz transportabler Zenitkameras für die Lotabweichungsbestimmung. Z. Vermessungswesen, 110, 439–450 (in German).

    Google Scholar 

  • Smith D.A., Holmes S.A., Li X., Guillaume S., Wang Y.M., Bürki B., Roman D.R. and Damiani T.M., 2013. Confirming regional 1 cm differential geoid accuracy from airborne gravimetry: the geoid slope validation survey of 2011. J. Geodesy, 87, 885–907.

    Google Scholar 

  • Soler T., Carlson Jr. A.E. and Evans A.G., 1989. Determination of vertical deflections using the Global Positioning System and geodetic levelling. Geophys. Res. Lett., 16, 695–698.

    Google Scholar 

  • Somieski A.E., 2008. Astrogeodetic Geoid and Isostatic Considerations in the North Aegean Sea, Greece. Ph.D. Thesis No. 17790. ETH, Zurich, Switzerland.

    Google Scholar 

  • Tian L., Guo J., Han Y., Lu X., Liu W., Wang Z., Wang B., Yin Z. and Wang H., 2014. Digital zenith telescope prototype of China. Chinese Sci. Bull, 59, 1978–1983. 672

    Google Scholar 

  • Torge W., 2001. Geodesy. 3rd Edition. De Gruyter, Berlin, New York.

    Google Scholar 

  • Torge W. and Müller J., 2012. Geodesy. 4th Edition. De Gruyter, Berlin, New York.

    Google Scholar 

  • TÖth G. and VÖlgyesi L., 2017. Data processing of QDaedalus measurements. Geosci. Eng., 5, 147–164.

    Google Scholar 

  • TÖth G. and VÖlgyesi L., 2018. Experiences of QDaedalus measurements. Geosci. Eng., 6, 75–86.

    Google Scholar 

  • Türen Y., 2010. Astrojeodezik nivelman He yerel jeoit belirleme: Konya örneği (Geoid determination using astrogeodetic levelling: a case study in Konya). M.Sc. Thesis. Geomatics Engineering, Selçuk University, Konya (in Turkish).

    Google Scholar 

  • Vignudelli S., Kostianoy A., Cipollini P. and Benveniste J. (Eds), 2011. Coastal Altimetry. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Vittuari L., Tini M.A., Sarti P., Serantoni E., Borghi A., Negusini M. and Guillaume S., 2016. A comparative study of the applied methods for estimating deflection of the vertical in terrestrial geodetic measurements. Sensors, 16, Art.No. 565, DOI: https://doi.org/10.3390/s16040565.

  • Voigt C., 2013. Astrogeodatische Lotabweichungen zur Validierung von Schwerefeldmodellen. Ph.D. Thesis. Fachrichtung Geodasie und Geoinformatik der Leibniz University, Hannover, Germany (in German).

    Google Scholar 

  • Wang B., Tian L., Wang Z., Yin Z., Liu W., Qiao Q., Wang H. and Han Y., 2014. Image and data processing of digital zenith telescope (DZT-1) of China. Chinese Sci. Bull, 59, 1984–1991.

    Google Scholar 

  • Wang Y.M., Becker C., Mader G., Martin D., Li X., Jiang T., Breidenbach S., Geoghegan C., Winester D., Guillaume S. and Bürki B., 2017. The geoid slope validation survey 2014 and GRAV-D airborne gravity enhanced geoid comparison results in Iowa. J. Geodesy, 91, 1261–1276.

    Google Scholar 

  • Wessel P., Smith W.H.F., Scharroo R., Luis J.F. and Wobbe F., 2013. Generic mapping tools: improved version released. Eos Trans. AGU, 94(45), 409–410.

    Google Scholar 

  • Wissel H., 1982. Zur Leistungsfähigkeit von transportablen Zenitkameras bei der Lotabweichungsbestimmung. Wissen. Arb. Fach. Vermessungswesen Univ. Hannover Nr. 107, Hannover, Germany (in German).

  • Zarins A., Rubans A. and Silabriedis G., 2018. Performance analysis of Latvian zenith camera. Geodesy Cartogr., 44, 1–5, DOI: https://doi.org/10.3846/gac.2018.876.

    Google Scholar 

Download references

Acknowledgements

M.A. and C.H. would like to acknowledge the support of the German Academic Exchange Service (DAAD) short-term grant and the Scientific and Technological Research Council of Turkey (TUBITAK) BIDEB 2214-A grant program (1059B141601200, Albayrak and Hirt, 2018). C.H. would like to acknowledge Prof. Carl Christian Tscherning’s advice on the potential usefulness of vertical deflections to investigate and reinforce gravity field models in coastal zones, made in a conversation 19 years ago. M.A. and C.K.S. are grateful to the Fulbright Foundation for its support which enables data analysis in this study at the Ohio State University. The fieldwork in Istanbul was supported by the TUBITAK project (Grant Number 115Y237; Özlüdemir, 2015). The authors are grateful to their invaluable supporters: Burak Basoglu, Mohammed Mohseni Aref and H. Feriha Albayrak in Istanbul, and Markus Hauk and Paul Duckeck at TUM, Germany. The research is partially supported by the Natural Science Foundation of China (41584016, 41974040). This paper is a part of M.A.’s PhD thesis (619803) at ITU. Finally, the authors would like to thank the two anonymous reviewers and the editor for their constructive comments. Figures 3, 4 and S.2 were drawn using the Generic Mapping Tools (GMT; Wessel et al., 2013), and Fig. S.1 was drawn using QGIS (OpenStreetMap, 2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Müge Albayrak.

Additional information

Supplementary material

(Fig. S.1 and Tables S.1–S.6) is available at https://www.researchgate.net/publication/341640764_Supplementary_Materials.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Albayrak, M., Hirt, C., Guillaume, S. et al. Quality assessment of global gravity field models in coastal zones: A case study using astrogeodetic vertical deflections in Istanbul, Turkey. Stud Geophys Geod 64, 306–329 (2020). https://doi.org/10.1007/s11200-019-0591-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-019-0591-2

Keywords

  • vertical deflections
  • astrogeodetic measurements
  • QDaedalus
  • coastal-zone geodesy
  • satellite gravity