Skip to main content
Log in

Influence of use of different values of tidal parameters h2, l2 on determination of coordinates of SLR stations

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The paper presents the results of coordinates determination for some satellite laser ranging (SLR) stations in the new ITRF2014 system based on LAGEOS-1 and LAGEOS-2 satellite data. The analysis was conducted in two variants. In the first one, coordinates of the SLR stations were estimated with the use of the nominal values of the tidal parameters: h2 = 0.6078 and l2 = 0.0847 (i.e. the standard International Earth Rotation and Reference Systems Service recommended values). In the second, coordinates of the SLR stations were calculated with the use of values of the tidal parameters estimated in the author’s previous paper: h2 = 0.6140 and l2 = 0.0876 (determined from the LAGEOS-1 and LAGEOS-2 data). The influence of the tidal parameters changes on the computation of the stations’ coordinates was investigated. The maximum differences (X, Y, Z(Variant 1) — X, Y, Z(Variant 2)) of about 4 mm, were achieved for Z component for Yarragadee (station ID 7090) and Monument Peak (7110) and of about 3 mm for Y component for Yarragadee (7090) and Changchun (7237) stations. All calculations related to determining the satellite orbits and the SLR stations’ coordinates were carried out with the use of the GEODYN II NASA/GSFC software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altamimi Z., Rebischung P., Métivier L. and Collilieux X., 2016. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J. Geoph. Res.- Solid Earth, 121, 6109–6131.

    Article  Google Scholar 

  • Bizouard C., Lambert S., Becker O. and Richard J.Y. 2017. Combined Solution C04 for Earth Orientation Parameters Consistent with International Terrestrial Reference Frame 2014. IERS Earth Orientation Product Centre, Observatoire de Paris, France.

    Google Scholar 

  • Diamante J. and Wiliamson M., 1972. Error Models for Solid Earth and Ocean Tidal Effects in Satellite Systems Analysis. Wolf Research and Development Corporation, Contract No. NAS 5–11735 Mod 57, Goddard Space Flight Center, Greenbelt, MD.

    Google Scholar 

  • Folkner W.M., Charlot P., Finger M.H., Williams J.G., Sovers O.J., Newhall X.X. and Standish E.M. Jr., 1994. Determination of the extragalactic-planetary frame tie from joint analysis of radio interferometric and lunar laser ranging measurements. Astron. Astrophys., 287, 279–289.

    Google Scholar 

  • Jagoda M. and Rutkowska M., 2016a. Estimation of the Love numbers: k 2, k 3 using SLR data of the LAGEOS1, LAGEOS2, STELLA and STARLETTE satellites. Acta Geod. Geophys., 51, 493–504.

    Article  Google Scholar 

  • Jagoda M., Rutkowska M. and Kraszewska K., 2016b. The evaluation of time variability of tidal parameters h and l using SLR technique. Acta Geodyn. Geomater., 14, 153–158.

    Article  Google Scholar 

  • Jagoda M., Rutkowska M., Kraszewska K. and Suchocki C., 2018. Time changes of the potential Love tidal parameters k 2 and k 3. Stud. Geophys. Geod., 62, 586–595, DOI: https://doi.org/10.1007/s11200-018-0610-8.

    Article  Google Scholar 

  • Lejba P., Schillak S. and Wnuk E., 2007. Determination of orbits and SLR stations’ coordinates on the basis of laser observations of the satellites Starlette and Stella. Adv. Space Res., 40, 143–149.

    Article  Google Scholar 

  • Lejba P. and Schillak S., 2011. Determination of station positions and velocities from laser ranging observations to Ajisai, Starlette and Stella satellites. Adv. Space Res., 47, 654–662.

    Article  Google Scholar 

  • Mathews P.M., Dehant V. and Gipson J.M., 1997. Tidal station displacements. J. Geophys. Res.- Solid Earth, 102, 20469–20477.

    Article  Google Scholar 

  • McCarthy J.J., Rowton S., Moore D., Pavlis D.E., Luthcke S.B. and Tsaoussi L.S., 1993. GEODYN II System Operation Manual, 1-5. STX System Corp., Lanham, MD.

    Google Scholar 

  • Mendes V.B. and Pavlis E.C., 2004. High-accuracy zenith delay prediction at optical wavelengths. Geophys. Res. Lett., 31, L14602.

    Article  Google Scholar 

  • Pearlman M.R., Degnan J.J. and Bosworth J.M., 2002. The International Laser Ranging Service. Adv. Space Res., 30, 135–143.

    Article  Google Scholar 

  • Petit G. and Luzum B., 2010. IERS Conventions. IERS Technical Note No. 36. Verlag des Bundesamts fur Kartographie und Geodasie, Frankfurt an Main, Germany.

    Google Scholar 

  • Rutkowska M., 1999. Investigation on stability of network solutions estimated from satellite laser measurements for 1993–1995. Artificial Satellites, 34, 77–135.

    Google Scholar 

  • Rutkowska M. and Jagoda M., 2010. Estimation of the elastic Earth parameters (h 2, l 2) using SLR data. Adv. Space Res., 46, 859–871.

    Article  Google Scholar 

  • Rutkowska M. and Jagoda M., 2015. SLR technique used for description of the Earth elasticity. Artificial Satellites, 50, 127–141.

    Article  Google Scholar 

  • Rutkowska M. and Schillak S., 1994. Estimation of the Borowiec station position from 5-year Lageos observations. Artificial Satellites, 29, 67–73.

    Google Scholar 

  • Rutkowska M., Romay Merino M.M., Schillak S. and Dow J.H., 1995. Improvement of the SLR Borowiec station position in the global network ITRF91. Adv. Space Res., 16, 97–100.

    Article  Google Scholar 

  • Schillak S., 2004. Analysis of the process of the determination of station coordinates by satellite laser ranging based on results of the Borowiec SLR station in 1993.5-2000.5. Part 2: Determination of the station coordinates. Artificial Satellites, 39, 265–287.

    Google Scholar 

  • Schillak S. and Wnuk E., 2002. The SLR stations coordinates determined from monthly arcs of Lageos-1 and Lageos-2 laser ranging in 1999–2001. Adv. Space Res., 31, 413–418.

    Google Scholar 

  • Schillak S., Kuźmicz-Cieślak M. and Wnuk E., 2001. Stability of coordinates of the SLR stations on a basis of Lageos-1 and Lageos-2 laser ranging in 1999. Artificial Satellites, 36, 85–96.

    Google Scholar 

  • Schillak S., Wnuk E., Kunimori H. and Yoshino T., 2006. Crustal deformation in the Key Stone network detected by satellite laser ranging. J. Geodesy, 79, 682–688.

    Article  Google Scholar 

  • Tapley B.D., Flechtner F., Bettadpur S.V. and Watkins M.M. 2013. The status and future prospect for GRACE after the first decade. Abstract. American Geophysical Union Fall Meeting 2013, (http://abstractsearch.agu.org/meetings/2013/FM/G32A-01.html).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Jagoda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagoda, M. Influence of use of different values of tidal parameters h2, l2 on determination of coordinates of SLR stations. Stud Geophys Geod 63, 71–82 (2019). https://doi.org/10.1007/s11200-018-1174-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-018-1174-3

Keywords

Navigation