Anhysteretic remanent magnetization: model of grain size distribution of spherical magnetite grains

Abstract

A phenomenological model based on a linear relationship between the magnetic coercivity field and the reciprocal of the grain diameter is applied to explain the anhysteretic remanent magnetization (ARM) imparted to artificial samples with different concentrations of a very well characterized magnetite powder. By analyses of scanning electron microscopy images, the spherically shaped single domain synthetic magnetite is found to follow a lognormal grain size distribution with ~86 nm of mean diameter. The proposed model, fitted to ARM measurements up to a peak alternating field of 100 mT, yields a very good agreement. The coercivity behaviour predicted by micromagnetism theory disagrees with the experimental results of this work. A likely explanation for the discrepancy is that the magnetite particles, which consist of a mixture of grains in coherent rotation and curling modes, produce similar observations as domain processes.

This is a preview of subscription content, access via your institution.

References

  1. Aharoni A., 2001. Micromagnetics: past, present and future. Physica B, 306, 1–9.

    Article  Google Scholar 

  2. Almeida T.P., Muxworthy A.R, Kovács A., Williams W. and Dunin-Borkowski R.E., 2017. Observation of thermally-induced magnetic relaxation in a magnetic grain using off-axis electron holography. J. Phys. Conf. Ser., 902, 012001, DOI: 10.1088/1742-6596/902/1/012001.

    Article  Google Scholar 

  3. Bertotti G., 1998. Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engineers. First Edition. Academic Press, San Diego, CA.

    Google Scholar 

  4. Brown W.F., Jr., 1963. Micromagnetics. John Wiley and Sons, Inc., New York.

    Google Scholar 

  5. Butler R.F., 1992. Paleomagnetism: Magnetic Domains to Geologic Terranes. Blackwell Scientific Publications, Boston, MA.

    Google Scholar 

  6. Chantrell R.W., Popplewell J. and Charles S.W., 1977. The effect of a particle size distribution on the coercivity and remanence of a fine particle system. Physica B+C, 86-88, 1421–1422.

    Article  Google Scholar 

  7. Dunlop D.J. and West G.F., 1969. An experimental evaluation of single domain theories. Rev. Geophys., 7, 709–757.

    Article  Google Scholar 

  8. Dunlop D.J. and Özdemir Ö., 1997. Rock Magnetism: Fundamentals and Frontiers. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  9. Gehring A.U., Fischer H., Louvel M., Kunze K. and Weidler P.G., 2009. High temperature stability of natural maghemite: A magnetic and spectroscopic study. Geophys. J. Int., 179, 1361–1371.

    Article  Google Scholar 

  10. Eick P.M. and Schlinger C.M., 1990. The use of magnetic susceptibility and its frequency dependence for delineation of a magnetic stratigraphy in ash-flow tuffs. Geophys. Res. Lett., 17, 783–786.

    Article  Google Scholar 

  11. Egli R. and Lowrie W., 2002. Anhysteretic remanent magnetization of fine magnetic particles. J. Geophys. Res.-Solid Earth, 107, 2209, DOI: 10.1029/2001JB000671.

    Article  Google Scholar 

  12. Jackson M., 1990. Magnetic anisotropy of the Trenton limestone revisited. Geophys. Res. Lett., 17, 1121–1124.

    Article  Google Scholar 

  13. Jackson M., 1991. Anisotropy of magnetic remanence: A brief review of mineralogical sources, physical origins, and geological applications, and comparison with susceptibility anisotropy. Pure Appl. Geophys., 136, 1–28.

    Article  Google Scholar 

  14. Jackson M., Craddock J.P., Ballard M., Van der Voo R. and McCabe C., 1989. Anhysteretic remanent magnetic anisotropy and calcite strains in Devonian carbonates from the Appalachian Plateau, New York. Tectonophysics, 161, 43–53.

    Article  Google Scholar 

  15. Liu Q., Deng C., Yu Y., Torrent J., Jackson M., Banerjee S. and Zhu R., 2005a. Temperature dependence of magnetic susceptibility in an argon environment: implications for pedogenesis of Chinese loess/palaeosols. Geophys. J. Int., 161, 102–112.

    Article  Google Scholar 

  16. Liu Q., Torrent J., Maher B.A., Yu Y., Deng C., Zhu R. and Zhao X., 2005b. Quantifying grain size distribution of pedogenic magnetic particles in Chinese loess and its significance for pedogenesis. J. Geophys. Res.-Solid Earth, 110, B11102, DOI: 10.1029/2005JB003726.

    Google Scholar 

  17. Maurain C., 1904. Étude et comparaison des procédés de réduction de l’hystérésis magnétique. J. Phys. Theor. Appl., 3, 417–434 (in French).

    Article  Google Scholar 

  18. McCabe C., Jackson M. and Ellwood B.B., 1985. Magnetic anisotropy in the Trenton limestone: results of a new technique, anisotropy of anhysteretic susceptibility. Geophys. Res. Lett., 12, 333–336.

    Article  Google Scholar 

  19. McNab T.K., Fox R.A. and Boyle A.J.F., 1968. Some magnetic properties of magnetite (Fe3O4) microcrystals. J. Appl. Physics, 39, 5703–5711.

    Article  Google Scholar 

  20. Muxworthy A.R., Dunlop D.J. and Williams W., 2003. High-temperature magnetic stability of small magnetite particles. J. Geophys. Res.-Solid Earth, 108, 2281, DOI: 10.1029/2002JB002195.

    Google Scholar 

  21. Muxworthy A.R. and Williams W., 2006. Critical single-domain/multidomain grain sizes in noninteracting and interacting elongated magnetite particles: Implications for magnetosomes. J. Geophys. Res.-Solid Earth, 111, B12S12, DOI: 10.1029/2006JB004588.

    Google Scholar 

  22. Nagata T., 1961. Rock Magnetism. Revised Edition. Maruzen Co. Ltd., Tokyo, Japan.

    Google Scholar 

  23. Néel L., 1932. Influence of fluctuations of the molecular field on the magnetic properties of bodies. Ann. Phys., 17, 5–105.

    Article  Google Scholar 

  24. Néel L., 1948. Proprietes magnetiques des ferrites-ferrimagnetisme et antiferromagnetisme. Ann. Phys., 3, 137–198 (in French).

    Article  Google Scholar 

  25. Néel L., 1950. Aimantation a saturation de certains ferrites. Comptes Rendus Hebdomadaires des Seances de L’Academie des Sciences, 230, 190–192.

    Google Scholar 

  26. Néel L., 1951. Effet de la dilatation thermique sur la valeur de la constante de curie des ferrites. J. Phys. Radium, 12, 258–259.

    Article  Google Scholar 

  27. O’Grady K. and Bradbury A., 1983. Particle size analysis in ferrofluids. J. Magn. Magn. Mater., 39, 91–94.

    Article  Google Scholar 

  28. Petrova G.N., 1957. Magnitnaya stabil'nost' gornykh porod (Magnetic stability of rocks). Izvest. Akad. Nauk SSSR Ser. Geofiz., 1, 52–61 (in Russian).

    Google Scholar 

  29. Petrova G.N., 1959. On magnetic stability of rocks. Ann. Géophys., 15, 60–66.

    Google Scholar 

  30. Shapiro W.W. and Wilk M.B., 1965. An analysis of variance test for normality (complete samples). Biometrika, 52, 591–611.

    Article  Google Scholar 

  31. Schmidbauer E. and Schembera N., 1987. Magnetic hysteresis properties and anhysteretic remanent magnetization of spherical Fe3O4 particles in the grain size range 60-160 nm. Phys. Earth Planet. Inter., 46, 77–83.

    Article  Google Scholar 

  32. Smart J.S., 1955. The Néel theory of ferrimagnetism. Am. J. Phys., 23, 356–370.

    Article  Google Scholar 

  33. Stoner E.C. and Wohlfarth E.P., 1948. A mechanism of magnetic hysteresis in heterogeneous alloys. Phil. Trans. R. Soc. Lond. A, 240, 599–642.

    Article  Google Scholar 

  34. Tannous C. and Gieraltowski J., 2008. The Stoner-Wohlfarth model of ferromagnetism. Eur. J. Phys., 29, 475–487.

    Article  Google Scholar 

  35. Tauxe L., Bertram H.N and Seberino C., 2002. Physical interpretation of hysteresis loops: Micromagnetic modeling of fine particle magnetite. Geochem. Geophys. Geosyst., 3, 1055, DOI: 10.1029/2001GC000241.

    Article  Google Scholar 

  36. Tauxe L., Banerjee S.K., Butler R.F. and Van der Voo R, 2016. Essentials of Paleomagnetism. 4th Web Edition, https://earthref.org/MagIC/books/Tauxe/Essentials/.

    Google Scholar 

  37. Thellier E. and Rimbert F., 1954. Sur l’analyse d’aimantations fossiles par l’'action de champs magnetiques alternatifs. C. R. Acad. Sci. Paris, 239, 1399–1401 (in French).

    Google Scholar 

  38. Thellier E. and Rimbert F., 1955. Sur l’utilisation, en paleomagnétisme, de la désaimantation por champs alternatifs. C. R. Acad. Sci. Paris, 240, 1404–1406 (in French).

    Google Scholar 

  39. Vasquez C.A., Orgeira M.J. and Sinito A.M., 2009. Origin of superparamagnetic particles in Argiudolls developed on loess, Buenos Aires (Argentina). Environ. Geol., 56, 1653–1661.

    Article  Google Scholar 

  40. Walton D., 1990. A theory of anhysteretic remanent magnetization of single-domain grains. J. Magn. Magn. Mater., 87, 369–374.

    Article  Google Scholar 

  41. Worm H.-U., 1998. On the superparamagnetic-stable single domain transition for magnetite, and frequency dependence of susceptibility. Geophys. J. Int., 133, 201–206.

    Article  Google Scholar 

  42. Worm H.-U. and Jackson M., 1999. The superparamagnetism of Yucca Mountain Tuff. J. Geophys. Res.-Solid Earth, 104, 25415–25425.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Vasquez.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vasquez, C.A., Sapienza, F.F., Somacal, A. et al. Anhysteretic remanent magnetization: model of grain size distribution of spherical magnetite grains. Stud Geophys Geod 62, 339–351 (2018). https://doi.org/10.1007/s11200-017-1233-1

Download citation

Keywords

  • micromagnetism
  • magnetite
  • ARM
  • SEM
  • thermomagnetic curves