Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Anhysteretic remanent magnetization: model of grain size distribution of spherical magnetite grains

  • 77 Accesses

  • 1 Citations

Abstract

A phenomenological model based on a linear relationship between the magnetic coercivity field and the reciprocal of the grain diameter is applied to explain the anhysteretic remanent magnetization (ARM) imparted to artificial samples with different concentrations of a very well characterized magnetite powder. By analyses of scanning electron microscopy images, the spherically shaped single domain synthetic magnetite is found to follow a lognormal grain size distribution with ~86 nm of mean diameter. The proposed model, fitted to ARM measurements up to a peak alternating field of 100 mT, yields a very good agreement. The coercivity behaviour predicted by micromagnetism theory disagrees with the experimental results of this work. A likely explanation for the discrepancy is that the magnetite particles, which consist of a mixture of grains in coherent rotation and curling modes, produce similar observations as domain processes.

This is a preview of subscription content, log in to check access.

References

  1. Aharoni A., 2001. Micromagnetics: past, present and future. Physica B, 306, 1–9.

  2. Almeida T.P., Muxworthy A.R, Kovács A., Williams W. and Dunin-Borkowski R.E., 2017. Observation of thermally-induced magnetic relaxation in a magnetic grain using off-axis electron holography. J. Phys. Conf. Ser., 902, 012001, DOI: 10.1088/1742-6596/902/1/012001.

  3. Bertotti G., 1998. Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engineers. First Edition. Academic Press, San Diego, CA.

  4. Brown W.F., Jr., 1963. Micromagnetics. John Wiley and Sons, Inc., New York.

  5. Butler R.F., 1992. Paleomagnetism: Magnetic Domains to Geologic Terranes. Blackwell Scientific Publications, Boston, MA.

  6. Chantrell R.W., Popplewell J. and Charles S.W., 1977. The effect of a particle size distribution on the coercivity and remanence of a fine particle system. Physica B+C, 86-88, 1421–1422.

  7. Dunlop D.J. and West G.F., 1969. An experimental evaluation of single domain theories. Rev. Geophys., 7, 709–757.

  8. Dunlop D.J. and Özdemir Ö., 1997. Rock Magnetism: Fundamentals and Frontiers. Cambridge University Press, Cambridge, U.K.

  9. Gehring A.U., Fischer H., Louvel M., Kunze K. and Weidler P.G., 2009. High temperature stability of natural maghemite: A magnetic and spectroscopic study. Geophys. J. Int., 179, 1361–1371.

  10. Eick P.M. and Schlinger C.M., 1990. The use of magnetic susceptibility and its frequency dependence for delineation of a magnetic stratigraphy in ash-flow tuffs. Geophys. Res. Lett., 17, 783–786.

  11. Egli R. and Lowrie W., 2002. Anhysteretic remanent magnetization of fine magnetic particles. J. Geophys. Res.-Solid Earth, 107, 2209, DOI: 10.1029/2001JB000671.

  12. Jackson M., 1990. Magnetic anisotropy of the Trenton limestone revisited. Geophys. Res. Lett., 17, 1121–1124.

  13. Jackson M., 1991. Anisotropy of magnetic remanence: A brief review of mineralogical sources, physical origins, and geological applications, and comparison with susceptibility anisotropy. Pure Appl. Geophys., 136, 1–28.

  14. Jackson M., Craddock J.P., Ballard M., Van der Voo R. and McCabe C., 1989. Anhysteretic remanent magnetic anisotropy and calcite strains in Devonian carbonates from the Appalachian Plateau, New York. Tectonophysics, 161, 43–53.

  15. Liu Q., Deng C., Yu Y., Torrent J., Jackson M., Banerjee S. and Zhu R., 2005a. Temperature dependence of magnetic susceptibility in an argon environment: implications for pedogenesis of Chinese loess/palaeosols. Geophys. J. Int., 161, 102–112.

  16. Liu Q., Torrent J., Maher B.A., Yu Y., Deng C., Zhu R. and Zhao X., 2005b. Quantifying grain size distribution of pedogenic magnetic particles in Chinese loess and its significance for pedogenesis. J. Geophys. Res.-Solid Earth, 110, B11102, DOI: 10.1029/2005JB003726.

  17. Maurain C., 1904. Étude et comparaison des procédés de réduction de l’hystérésis magnétique. J. Phys. Theor. Appl., 3, 417–434 (in French).

  18. McCabe C., Jackson M. and Ellwood B.B., 1985. Magnetic anisotropy in the Trenton limestone: results of a new technique, anisotropy of anhysteretic susceptibility. Geophys. Res. Lett., 12, 333–336.

  19. McNab T.K., Fox R.A. and Boyle A.J.F., 1968. Some magnetic properties of magnetite (Fe3O4) microcrystals. J. Appl. Physics, 39, 5703–5711.

  20. Muxworthy A.R., Dunlop D.J. and Williams W., 2003. High-temperature magnetic stability of small magnetite particles. J. Geophys. Res.-Solid Earth, 108, 2281, DOI: 10.1029/2002JB002195.

  21. Muxworthy A.R. and Williams W., 2006. Critical single-domain/multidomain grain sizes in noninteracting and interacting elongated magnetite particles: Implications for magnetosomes. J. Geophys. Res.-Solid Earth, 111, B12S12, DOI: 10.1029/2006JB004588.

  22. Nagata T., 1961. Rock Magnetism. Revised Edition. Maruzen Co. Ltd., Tokyo, Japan.

  23. Néel L., 1932. Influence of fluctuations of the molecular field on the magnetic properties of bodies. Ann. Phys., 17, 5–105.

  24. Néel L., 1948. Proprietes magnetiques des ferrites-ferrimagnetisme et antiferromagnetisme. Ann. Phys., 3, 137–198 (in French).

  25. Néel L., 1950. Aimantation a saturation de certains ferrites. Comptes Rendus Hebdomadaires des Seances de L’Academie des Sciences, 230, 190–192.

  26. Néel L., 1951. Effet de la dilatation thermique sur la valeur de la constante de curie des ferrites. J. Phys. Radium, 12, 258–259.

  27. O’Grady K. and Bradbury A., 1983. Particle size analysis in ferrofluids. J. Magn. Magn. Mater., 39, 91–94.

  28. Petrova G.N., 1957. Magnitnaya stabil'nost' gornykh porod (Magnetic stability of rocks). Izvest. Akad. Nauk SSSR Ser. Geofiz., 1, 52–61 (in Russian).

  29. Petrova G.N., 1959. On magnetic stability of rocks. Ann. Géophys., 15, 60–66.

  30. Shapiro W.W. and Wilk M.B., 1965. An analysis of variance test for normality (complete samples). Biometrika, 52, 591–611.

  31. Schmidbauer E. and Schembera N., 1987. Magnetic hysteresis properties and anhysteretic remanent magnetization of spherical Fe3O4 particles in the grain size range 60-160 nm. Phys. Earth Planet. Inter., 46, 77–83.

  32. Smart J.S., 1955. The Néel theory of ferrimagnetism. Am. J. Phys., 23, 356–370.

  33. Stoner E.C. and Wohlfarth E.P., 1948. A mechanism of magnetic hysteresis in heterogeneous alloys. Phil. Trans. R. Soc. Lond. A, 240, 599–642.

  34. Tannous C. and Gieraltowski J., 2008. The Stoner-Wohlfarth model of ferromagnetism. Eur. J. Phys., 29, 475–487.

  35. Tauxe L., Bertram H.N and Seberino C., 2002. Physical interpretation of hysteresis loops: Micromagnetic modeling of fine particle magnetite. Geochem. Geophys. Geosyst., 3, 1055, DOI: 10.1029/2001GC000241.

  36. Tauxe L., Banerjee S.K., Butler R.F. and Van der Voo R, 2016. Essentials of Paleomagnetism. 4th Web Edition, https://earthref.org/MagIC/books/Tauxe/Essentials/.

  37. Thellier E. and Rimbert F., 1954. Sur l’analyse d’aimantations fossiles par l’'action de champs magnetiques alternatifs. C. R. Acad. Sci. Paris, 239, 1399–1401 (in French).

  38. Thellier E. and Rimbert F., 1955. Sur l’utilisation, en paleomagnétisme, de la désaimantation por champs alternatifs. C. R. Acad. Sci. Paris, 240, 1404–1406 (in French).

  39. Vasquez C.A., Orgeira M.J. and Sinito A.M., 2009. Origin of superparamagnetic particles in Argiudolls developed on loess, Buenos Aires (Argentina). Environ. Geol., 56, 1653–1661.

  40. Walton D., 1990. A theory of anhysteretic remanent magnetization of single-domain grains. J. Magn. Magn. Mater., 87, 369–374.

  41. Worm H.-U., 1998. On the superparamagnetic-stable single domain transition for magnetite, and frequency dependence of susceptibility. Geophys. J. Int., 133, 201–206.

  42. Worm H.-U. and Jackson M., 1999. The superparamagnetism of Yucca Mountain Tuff. J. Geophys. Res.-Solid Earth, 104, 25415–25425.

Download references

Author information

Correspondence to Carlos A. Vasquez.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vasquez, C.A., Sapienza, F.F., Somacal, A. et al. Anhysteretic remanent magnetization: model of grain size distribution of spherical magnetite grains. Stud Geophys Geod 62, 339–351 (2018). https://doi.org/10.1007/s11200-017-1233-1

Download citation

Keywords

  • micromagnetism
  • magnetite
  • ARM
  • SEM
  • thermomagnetic curves