Advertisement

Studia Geophysica et Geodaetica

, Volume 62, Issue 2, pp 206–222 | Cite as

Improving the computation of the gravitational terrain effect close to ground stations in the GTE software

  • Martina CapponiEmail author
  • Ahmed H. Mansi
  • Daniele Sampietro
Article

Abstract

The precise computation of the vertical gravitational attraction of the topographic masses (terrain correction) is still being studied both for geodetic and geophysical applications. In fact, it is essential in high precision geoid estimation by means of the well-known remove-compute-restore technique, which is used to isolate the gravitational effects of anomalous masses in exploration geophysics. The terrain correction can be evaluated exploiting a Digital Terrain Model (DTM) in different ways, such as classical numerical integration, prisms, tesseroids, polyhedrons, and/or Fast Fourier Transform techniques. The increasing resolution of recently developed DTMs, the increasing number of observation points, and the increasing accuracy of gravity data represent, nowadays, major challenges for the terrain correction computation. Classical point mass approximation and prism based-algorithms are indeed too slow, while Fourier-based algorithms are usually too much approximate when compared to the required accuracy. In this work, we improve the Gravity Terrain Effects (GTE) algorithm, the innovative tool that exploits a combined prism-Fast Fourier Transform approach especially developed for airborne gravimetry, to compute the terrain correction on the surface of the DTM (i.e. corresponding to the ground stations and/or its vicinity). This required development of a proper adjustment of the algorithms implemented within the GTE software and also to define and implement a procedure to overcome the problems of the computation of the gravitational effects due to the actual slope of the terrain close to the stations. The latter problem is thoroughly discussed and solved by testing different solutions like concentric cylindrical rings, triangulated polyhedrons, or ultra-high resolution squared prisms. Finally, numerical tests to prove the temporal efficiency and the computational performances of the improved GTE software to compute terrain correction for ground stations are also presented.

Keywords

gravity terrain effects GTE ground stations terrestrial gravity cylindrical rings triangulated polyhedrons ultra-high resolution squared prisms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam D., 2002. Gravity measurement: amazing GRACE. Nature, 416(6876), 10–11, DOI: 10.1038/416010a.CrossRefGoogle Scholar
  2. Asgharzadeh M.F., von Frese R.R.B., Kim H.R., Leftwich T.E. and Kim J.W., 2007. Spherical prism gravity effects by Gauss-Legendre quadrature integration. Geophys. J. Int., 169, 1–11, DOI: 10.1111/j.1365-246X.2007.03214.x.CrossRefGoogle Scholar
  3. Biagi L. and Sansò F., 2000. Tclight: a new technique for fast rtc computation. In: Sideris M.G. (Ed.), Gravity, Geoid and Geodynamics 2000. International Association of Geodesy Symposia 123, 61–66, Springer-Verlag, Berlin, Germany, DOI: 10.1007/978-3-662-04827-6_10.Google Scholar
  4. Chai Y. and Hinze W.J., 1988. Gravity inversion of an interface above which the density contrast varies exponentially with depth. Geophysics, 53, 837–845.CrossRefGoogle Scholar
  5. Coggon J.H., 1976. Magnetic and gravity anomalies of polyhedra. Geoexploration, 14, 93–105, DOI: 10.1016/0016-7142(76)90003-X.CrossRefGoogle Scholar
  6. D’Urso M.G., 2014. Analytical computation of gravity effects for polyhedral bodies. J. Geodesy, 88, 13–29.CrossRefGoogle Scholar
  7. D’Urso M.G., 2015. The gravity anomaly of a 2D polygonal body having density contrast given by polynomial functions. Surv. Geophys., 36, 391–425.CrossRefGoogle Scholar
  8. Dorman L.M. and Lewis B.T., 1974. The use of nonlinear functional expansions in calculation of the terrain effect in airborne and marine gravimetry and gradiometry. Geophysics, 39, 33–38, DOI: 10.1190/1.1440409.CrossRefGoogle Scholar
  9. Drinkwater M., Floberghagen R., Haagmans R., Muzi D. and Popescu A., 2003. GOCE: ESA’s first Earth explorer core mission. In: Beutler G., Drinkwater M.R., Rummel R. and von Steiger R. (Eds), Earth Gravity Field from Space-from Sensors to Earth Sciences. Kluwer Academic Publishers, Dordrecht, The Netherlands, 419–432.Google Scholar
  10. Forsberg, R., 1986. Spectral properties of the gravity field in the nordic countries. Bollettino di Geodesia e Scienze Affini, 45, 361–383.Google Scholar
  11. Forsberg R. and Tscherning C.C., 2008. An overview manual for the GRAVSOFT Geodetic Gravity Field Modelling Programs. 2nd Edition. Contract Report for JUPEM (http://cct.gfy.ku.ak /publ_cct/cct1936.pdf).Google Scholar
  12. Frigo M. and Johnson S.G., 1998. FFTW: an adaptive software architecture for the FFT. Proceedings of the 1998 IEEE International Conference on Acoustics, Speech, and Signal Processing, 3, 1381–1384.CrossRefGoogle Scholar
  13. Garcia-Abdeslem J., 2005. The gravitational attraction of a right rectangular prism with density varying with depth following a cubic polynomial. Geophysics, 70, J39–J42.CrossRefGoogle Scholar
  14. Götze H-J., Keller F., Lahmeyer B. and Rosenbach O., 1982. Interactive modeling and interpretation of three-dimensional gravity data. SEG Technical Program Expanded Abstracts 1982, 343–344, DOI: 10.1190/1.1826967.Google Scholar
  15. Götze H-J. and Lahmeyer B., 1988. Application of three-dimensional interactive modeling in gravity and magnetics. Geophysics, 53, 1096–1108, DOI: 10.1190/1.1442546.CrossRefGoogle Scholar
  16. Harrison J.C. and Dickinson M., 1989. Fourier transform methods in local gravity modeling. Bull. Geod., 63, 149–166, DOI: 10.1007/BF02519148.CrossRefGoogle Scholar
  17. Heck B. and Seitz K., 2007. A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling. J. Geodesy, 81, 121–136, DOI: 10.1007/s00190-006-0094-0.CrossRefGoogle Scholar
  18. Heiskanen W.A. and Moritz H., 1967. Physical geodesy. Bull. Géod., 86, 491–492, DOI: 10.1007/BF02525647.CrossRefGoogle Scholar
  19. Hinze W.J., Aiken C., Brozena J., Coakley B., Dater D., Flanagan G., Forsberg R., Hildenbrand T., Keller G.R., Kellogg J., Robert K., Xiong L., Andre M., Robert M., Mark P., Donald P., Dhananjay R., Daniel R., Jamie U-G., Marc V., Michael W. and Daniel W., 2005. New standards for reducing gravity data: The North American gravity database. Geophysics, 70, J25–J32, DOI: 10.1190/1.1988183.CrossRefGoogle Scholar
  20. Hjelt S.E., 1974. The gravity anomaly of a dipping prism. Geoexploration, 12, 29–39, DOI: 10.1016/0016-7142(74)90004-0.CrossRefGoogle Scholar
  21. Hofmann-Wellenhof B. and Moritz H., 2006. Physical Geodesy. Springer-Verlag, Wien, Austria.Google Scholar
  22. Huang J., Vaníček P., Pagiatakis S.D. and Brink W., 2001. Effect of topographical density on geoid in the Canadian Rocky Mountains. J. Geodesy, 74, 805–815, DOI: 10.1007/s001900000145.CrossRefGoogle Scholar
  23. Nagy D., Papp G. and Benedek J., 2000. The gravitational potential and its derivatives for the prism. J. Geodesy, 74, 552–560, DOI: 10.1007/s001900000116.CrossRefGoogle Scholar
  24. Novák P. and Grafarend E.W., 2005. Ellipsoidal representation of the topographical potential and its vertical gradient. J. Geodesy, 78, 691–706, DOI: 10.1007/s00190-005-0435-4.CrossRefGoogle Scholar
  25. Parker R.L., 1973. The rapid calculation of potential anomalies. Geophys. J. Int., 31, 447–455, DOI: 10.1111/j.1365-246X.1973.tb06513.x.CrossRefGoogle Scholar
  26. Pohánka V., 1988. Optimum expression for computation of the gravity field of a homogeneous polyhedral body. Geophys. Prospect., 36, 733–751.CrossRefGoogle Scholar
  27. Reguzzoni M., Sampietro D. and Sansò F., 2005. Global Moho from the combination of the CRUST2.0 model and GOCE data. Geophys. J. Int., 195, 222–237, DOI: 10.1093/gji/ggt247.CrossRefGoogle Scholar
  28. Reigber C., Schwintzer P. and Lühr H., 1999. The CHAMP geopotential mission. Boll. Geof. Teor. Appl., 40, 285–289.Google Scholar
  29. Sampietro D., Capponi M., Triglione D., Mansi A.H., Marchetti P. and Sansò F., 2016. GTE: a new software for gravitational terrain effect computation: theory and performances. Pure Appl. Geophys., 173, 2435–2453, DOI: 10.1007/s00024-016-1265-4.CrossRefGoogle Scholar
  30. Sampietro D., Sona G. and Venuti G., 2007. Residual terrain correction on the sphere by an FFT Algorithm. Proceedings of the 1st International Symposium of the International Gravity Field Service “Gravity Field of the Earth”. Harita Dergisi, Special Issue 18, General Command of Mapping, Istanbul, Turkey, 306-311.Google Scholar
  31. Sampietro D., Capponi M., Mansi A.H., Gatti A., Marchetti P. and Sansò F., 2017. Space-wise approach for airborne gravity data modelling. J. Geodesy, 91, 535–545.CrossRefGoogle Scholar
  32. Sansò F.and Sideris M.G., 2013. Geoid Determination: Theory and Methods. Lecture Notes in Earth System Sciences, 110. Springer-Verlag, Heidelberg, Germany.Google Scholar
  33. Sideris M.G., 1984. Computation of Gravimetric Terrain Corrections Using Fast Fourier Transform Techniques. PhD Thesis. University of Calgary, Calgary, Canada.Google Scholar
  34. Talwani M. and Ewing M., 1960. Rapid computation of gravitational attraction of three-dimensional bodies of arbitrary shape. Geophysics, 25, 203–225, DOI: 10.1190/1.1438687.CrossRefGoogle Scholar
  35. Tsoulis D.V., 1998. A combination method for computing terrain corrections. Phys. Chem. Earth, 23, 53–58, DOI: 10.1016/S0079-1946(97)00241-3.CrossRefGoogle Scholar
  36. Tsoulis D., 2003. Terrain modeling in forward gravimetric problems: A case study on local terrain effects. J. Appl. Geophys., 54, 145–160.CrossRefGoogle Scholar
  37. Tsoulis D., Novák P. and Kadlec M., 2009. Evaluation of precise terrain effects using highresolution digital elevation models. J. Geophys. Res.-Solid Earth, 114, B02404, DOI: 10.1029/2008JB005639.CrossRefGoogle Scholar
  38. Tziavos I.N., Sideris M.G., Forsberg R. and Schwarz K.P., 1988. The effect of the terrain on airborne gravity and gradiometry. J. Geophys. Res., 93(B8), 9173–9186.CrossRefGoogle Scholar
  39. Uieda L., Barbosa V.C. and Braitenberg C., 2015. Tesseroids: forward-modeling gravitational fields in spherical coordinates. Geophysics, 81, F41–F48, DOI: 10.1190/geo2015-0204.1.CrossRefGoogle Scholar
  40. Vajda P., Vaníček P., Novák P. and Meurers B., 2004. On evaluation of Newton integrals in geodetic coordinates: Exact formulation and spherical approximation. Contrib. Geophys. Geodesy, 34, 289–314.Google Scholar
  41. Werner R.A., 2017. The solid angle hidden in polyhedron gravitation formulations. J. Geodesy, 91, 307–328.CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2018

Authors and Affiliations

  • Martina Capponi
    • 1
    • 2
    Email author
  • Ahmed H. Mansi
    • 2
  • Daniele Sampietro
    • 3
  1. 1.DICEA, Area of Geomatics and GeodesyUniversità of Roma La SapienzaRomaItaly
  2. 2.DICAPolitecnico di MilanoMilanItaly
  3. 3.Geomatics Research & Development s.r.l.Lomazzo, ComoItaly

Personalised recommendations