Skip to main content
Log in

One-step solution to local tie vector determination at co-located GNSS/VLBI sites

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The local tie vector, which connects the different space geodetic techniques at a co-located site, plays an important role in the realization of the International Terrestrial Reference Frame (ITRF). This paper presents a new method to determine the tie vector between the GNSS and very long baseline interferometry tracking points. The parameters of the local tie vector and the axes offsets are introduced into constraint equations. The parameters are then resolved using the 3D constrained least squares adjustment. With the surveying data collected at two different sites (Kunming and Urumqi) in China, the proposed method can precisely determine the local tie vectors in a geocentric frame. The root mean square error (RMSE) is (1.2, 2.3 and 1.5 mm) and (1.0, 1.5 and 1.4 mm) for the three coordinate components at the sites in Kunming and Urumqi, respectively. The offset between the primary and secondary axes of the VLBI telescopes is estimated to be 7.5 mm in Kunming’s site and 4.0 mm in Urumqi’s site, and the corresponding RMSE is 1.8 mm and 2.0 mm for the two sites, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Altamimi Z., 2008. Importance of local ties for the ITRF. 13th FIG symposium on deformation measurement and analysis. LNEC, Lisbon, 2008, May 12–15, https://www.fig.net/resources /proceedings/2008/lisbon_2008_comm6/papers/pas02/pas02_01_altamimi_mc108.pdf.

    Google Scholar 

  • Altamimi Z. and Rothacher M., 2005. ITRF and co-location sites. In: Richter B., Dick W. and Schwegmann W. (Eds), Proceedings of IERS Workshop on Site Co-Location, Matera, Italy. IERS Technical Note, 33, 8–15.

    Google Scholar 

  • Altamimi Z., Collilieux X., Legrand J., Garayt B. and Boucher C., 2007. ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. J. Geophys. Res. Solid Earth, 112, 1978–2012.

    Article  Google Scholar 

  • Altamimi Z., Collilieux X. and Métivier L., 2011. ITRF2008: an improved solution of the international terrestrial reference frame. J. Geodesy, 85, 457–473.

    Article  Google Scholar 

  • Altamimi Z., Rebischung P., Métivier L. and Collilieux X., 2016. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J. Geophys. Res. Solid Earth, 121, 6109–6131.

    Article  Google Scholar 

  • Altamimi Z., Sillard P. and Boucher C., 2002. ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications. J. Geophys. Res. Solid Earth, 107, 1978–2012.

    Article  Google Scholar 

  • Angermann D., Drewes H., Gerstl M., Kelm R., Krugel M. and Meisel B., 2005. ITRF combinationstatus and recommendations for the future. In: Sanso F. (Ed.), A Window on the Future of Geodesy. International Association of Geodesy Symposia, 128, Springer-Verlag, Berlin, Heidelberg, Germany, 3–8.

    Google Scholar 

  • Dawson J., Sarti P., Johnston G.M. and Vittuari L, 2007. Indirect approach to invariant point determination for SLR and VLBI systems: an assessment. J. Geodesy, 81, 433–441.

    Article  Google Scholar 

  • Gong X.Q., Shen Y.Z., Wang J.X., Wu B., You X.Z. and Chen J.P., 2013. Surveying colocated GNSS, VLBI, and SLR stations in China. J. Surv. Eng., 27–34.

    Google Scholar 

  • Herring T.A., King R.W. and McClusky S.C., 2010. Introduction to Gamit/Globk. Massachusetts Institute of Technology, Cambridge, MA.

    Google Scholar 

  • Leinen S., Becker M., Dow J., Feltens J. and Sauermann K., 2007. Geodetic determination of radio telescope antenna reference point and rotation axis parameters. J. Surv. Eng., 133, 41–51.

    Article  Google Scholar 

  • Lösler M., 2009. New mathematical model for reference point determination of an azimuthelevation type radio telescope. J. Surv. Eng., 135, 131–135.

    Article  Google Scholar 

  • Lösler M. and Hennes M., 2008. An innovative mathematical solution for a time-efficient IVS reference point determination. http://www.gik.kit.edu/downloads/MC_029_FINAL.pdf.

    Google Scholar 

  • Lösler M., Haas R. and Eschelbach C., 2013. Automated and continual determination of radio telescope reference points with sub-mm accuracy: results from a campaign at the Onsala Space Observatory. J. Geodesy, 87, 791–804.

    Article  Google Scholar 

  • Lösler M., Haas R. and Eschelbach C., 2016. Terrestrial monitoring of a radio telescope reference point using comprehensive uncertainty budgeting. J. Geodesy, 90, 467–486.

    Article  Google Scholar 

  • Li J.L., Xiong F.W., Yu C.L., Zhang J.W., Guo L. and Fan Q.Y., 2014. Precise determination of the reference point coordinates of Shanghai Tianma 65-m radio telescope. Chinese Sci. Bull., 59, 2558–2567.

    Article  Google Scholar 

  • Liu J., Wei N. and Shi C., 2013. Status and prospects of the International Terrestrial Reference Frame (ITRF). Chinese J. Nature, 35, 243–250 (in Chinese).

    Google Scholar 

  • Ma X.P., Shen Y.Z., Wang J.X., Wu B. and You X.Z., 2014. Direct solution of SLR and VLBI antenna rotation center. Acta Geod. Cartograph. Sinica, 43, 257–262 (in Chinese).

    Google Scholar 

  • Ning T., Haas R. and Elgered G., 2015. Determination of the local tie vector between the VLBI and GNSS reference points at Onsala using GPS measurements. J. Geodesy, 89, 711–723.

    Article  Google Scholar 

  • Sarti P., Sillard P. and Vittuari L., 2004. Surveying co-located space-geodetic instruments for ITRF computation. J. Geodesy, 78, 210–222.

    Article  Google Scholar 

  • Shen Y.Z. and Chen T.W., 2006. Determination of space coordinate differences of co-location sites in Shanghai observatory. J. Tongji Univ. (Natural Science), 35, 387–391 (in Chinese).

    Google Scholar 

  • Shen Y.Z., You X.Z., Wang J.X., Wu B., Chen J.P., Ma X.P. and Gong X.Q., 2015. Mathematical model for computing precise local tie vectors for CMONOC co-located GNSS/VLBI/SLR stations. Geodesy Geodyn., 6, 1–6.

    Article  Google Scholar 

  • Wang J.X., Ji S.B. and Shi Y.M., 1997. The determination of space coordinate differences among VLBI, SLR and GPS stations of Shanghai observatory. J. PLA Inst. Surv. Mapping, 14, 7–10 (in Chinese).

    Google Scholar 

  • Wang J.X. and Ji K.M., 2008. Industrial Surveying Fitting. Surveying and Mapping Press, Beijing, China.

    Google Scholar 

  • Zhang Z.Z., 2008. Theory and Application of Satellite Altimetry and Gravity Data Assimilation. Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Beijing, China (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaping Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Yu, K., Montillet, JP. et al. One-step solution to local tie vector determination at co-located GNSS/VLBI sites. Stud Geophys Geod 62, 535–561 (2018). https://doi.org/10.1007/s11200-017-0461-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-017-0461-8

Keywords

Navigation