Skip to main content
Log in

New insights into asymmetric folding by means of the anisotropy of magnetic susceptibility, Variscan and Pyrenean folds (SW Pyrenees)

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Magnetic fabric allows to unravel the petrofabrics of sedimentary rocks and to assess their deformational history. The use of this technique, in addition to classical structural field observations in the limbs of seven asymmetric folds in the Pyrenees, helps to determine the differences of internal deformation as well as the folding kinematics. Three folds developed during the Variscan Orogeny in Ordovician and Devonian rocks, and four folds developed during the Pyrenean Orogeny in Eocene rocks, are studied. Folds show a variety of structural locations, in different thrust sheets of the Southern Central Pyrenees, different cleavage development, age, geometry and lithology. Sampling follows an equivalent lithological layer in the two limbs, except for one case, of the selected folds. Results show a modified tectonic magnetic fabric in most sites with the magnetic lineation on the tectonic foliation plane. A larger scattering of the magnetic lineation (maximum magnetic anisotropy axis) and a higher intensity of the preferred orientation of minerals (eccentricity of the anisotropy of magnetic susceptibility - AMS ellipsoid) is better observed in the overturned (short) limb of the asymmetric Variscan folds than in the normal (long) limb. On the other hand, the shape parameter in Alpine folds is generally larger in the overturned (short) limb then in the normal (long) one. A good clustering of the minimum magnetic anisotropy axes is observed in all limbs. The combination of the AMS data with the structural data helps to understand and better constrain the deformation degree in these asymmetric folds and to unravel the deformational history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ábalos B., Carreras J., Druguet E., Escuder-Viruete J., Gómez-Pugnaire M.T., Lorenzo-Álvarez S., Quesada C., Rodríguez-Fernández L.R. and Gil-Ibarguchi I., 2002. Variscan and Pre-Variscan tectonics. In: Gibbons W. and Moreno T. (Eds), The Geology of Spain. The Geological Society, London, U.K., 179-182.

    Google Scholar 

  • Alfonsi L., 1997. Paleomagnetic and anisotropy of magnetic susceptibility (AMS) analyses of the Plio-Pleistocene extensional Todi Basin, central Italy. Ann. Geophys., 40, 1535–1549.

    Google Scholar 

  • Allmendinger R.W., Cardozo N.C. and Fisher D., 2013. Structural Geology Algorithms: Vectors & Tensors. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Amrouch K., Beaudoin N., Lacombe O., Bellhasen N. and Daniel J.M., 2011. Paleostress magnitudes in folded sedimentary rocks. Geophys. Res. Lett., 38, L17302.

    Article  Google Scholar 

  • Anderson M.W. and Morris A., 2004. The puzzle of axis-normal magnetic lineations in folded lowgrade sediments (Bude Formation, SW England). Geol. Soci. London Spec. Publ., 238, 175–190.

    Article  Google Scholar 

  • Aubourg C., Rochette P. and Bergmüller F., 1995. Composite magnetic fabric in weakly deformed black shales. Phys. Earth Planet. Inter., 87, 267–278.

    Article  Google Scholar 

  • Borradaile G.J., 1987. Anisotropy of magnetic susceptibility: rock composition versus strain. Tectonophysics, 138, 327–329.

    Article  Google Scholar 

  • Borradaile G.J., 1988. Magnetic susceptibility, petrofabrics and strain. Tectonophysics, 156, 1–20.

    Article  Google Scholar 

  • Borradaile G.J. and Henry B., 1997. Tectonic applications of magnetic susceptibility and its anisotropy. Earth Sci. Rev., 42, 49–93.

    Article  Google Scholar 

  • Borradaile G.J. and Jackson M., 2004. Anisotropy of magnetic susceptibility (AMS): magnetic petrofabrics of deformed rocks. Geol. Soc. London Spec. Publ., 238, 299–360.

    Article  Google Scholar 

  • Borradaile G.J. and Tarling D.H., 1981. The influence of deformation mechanisms on magnetic fabrics in weakly deformed rocks. Tectonophysics, 77, 151–168.

    Article  Google Scholar 

  • Cardozo N.C. and Allmendinger R.W., 2013. Spherical projections with OSXStereonet. Comput. Geosci., 51, 193–205.

    Article  Google Scholar 

  • Carreras J. and Capella I., 1994. Tectonic levels in the Paleozoic basement of the Pyrenees: a review and a new interpretation. J. Struct. Geol., 16, 1509–1524.

    Article  Google Scholar 

  • Choukroune P. and Séguret M., 1973. Carte Structurale des Pyrénées, 1/500000. Université de Montpellier-ELF Aquitaine, France (in French).

    Google Scholar 

  • Cifelli F., Mattei M., Chadima M., Hirt A.M. and Hansen A., 2005. The origin of tectonic lineation in extensional basins: combined neutron texture and magnetic analyses on “undeformed” clays. Earth Planet. Sci. Lett., 235, 62–78.

    Article  Google Scholar 

  • de Sitter L.U., 1959. The structure of the axial zone of the Pyrenees in the province of Lérida. Estudios Geológicos, 15, 349–360.

    Google Scholar 

  • Debacker T.N., Hirt A.M., Sintubin M. and Robion P., 2009. Differences between magnetic and mineral fabrics in low-grade, cleaved siliciclastic pelites: A case study from the Anglo-Brabant Deformation Belt (Belgium). Tectonophysics, 466, 32–46.

    Article  Google Scholar 

  • Debacker T.N., Robion P. and Sintubin M., 2004. The anisotropy of magnetic susceptibility (AMS) in low-grade, cleaved pelitic rocks: influence of cleavage/bedding angle and type and relative orientation of magnetic carriers. Geol. Soc. London Spec. Publ., 238, 77–107.

    Article  Google Scholar 

  • Dinarès-Turell J., 1992. Paleomagnetisme a les Unitats Sudpirinenques Superiors. Implicacions estructurals. PhD Thesis. Universidad de Barcelona, Barcelona, Spain (in Spanish).

    Google Scholar 

  • Donath F.A. and Parker R.B., 1964. Folds and folding. Geol. Soc. Am. Bull., 75, 45–62.

    Article  Google Scholar 

  • Escher A. and Watterson J., 1974. Stretching fabrics, folds and crustal shortening. Tectonophysics, 22, 223–231.

    Article  Google Scholar 

  • Fernández-Bellón Ó., 2004. Reconstruction of Geological Structures in 3D: an Example from Southern Pyrenees. PhD Thesis. Universidad de Barcelona, Barcelona, Spain.

    Google Scholar 

  • García-Lasanta C., Roman-Berdiel T., Oliva-Urcia B., Casas A.M., Gil-Peña I., Speranza F. and Mochales T., 2016. Tethyan versus Iberian extension during the Cretaceous period in the eastern Iberian Peninsula: insights from magnetic fabrics. J. Geol. Soc., 173, 127–141.

    Article  Google Scholar 

  • García-Sansegundo J., 2004. Estructura varisca en los Pirineos. In: Vera J. (Ed.), Geología de España. SGE-IGME, Madrid, Spain, 254-258 (in Spanish).

    Google Scholar 

  • García-Sansegundo J., Poblet J. and Alonso J.L., 2011. Hinterland-foreland zonation of the Variscan orogen in the Central Pyrenees: comparison with the north portion of the Iberian Variscan Massif. In: Poblet J. and Lisle R. (Eds), Kinematic Evolution and Structural Styles of Foldand-Thrust Belts. Geol. Soc. London Spec. Publ., 349, 169–184.

    Google Scholar 

  • Ghosh S.K., 1966. Experimental tests of buckling folds in relation to strain ellipsoid in simple shear deformations. Tectonophysics, 3, 169–195.

    Article  Google Scholar 

  • Gil-Peña I., 2004. Estructura alpina de la zona axial. In: Vera J. (Ed.), Geología de España. SGEIGME, Madrid, Spain, 323-325 (in Spanish).

    Google Scholar 

  • Gil-Peña I. and Barnolas A., 2001. Superposición estructural hercínica y alpina en el borde occidental del domo de Pallassos (Noguera de Tor, Pirineo central). Boletín Geológico y Minero, 112, 5–16 (in Spanish).

    Google Scholar 

  • Gil-Peña I. and Barnolas A., 2004. El Domo del Orri (Pirineo central): un pliegue-manto reactivado por la tectónica alpina. Geotemas, 6, 267–270 (in Spanish).

    Google Scholar 

  • Graham J.W., 1954. Magnetic susceptibility anisotropy, an unexploited petrofabric element. Geol. Soc. Am. Bull., 65, 1257–1258.

    Google Scholar 

  • Graham J.W., 1966. Significance of magnetic anisotropy in Appalachian sedimentary rocks. In: Steinhart J.S. and Smith T.J. (Eds), The Earth Beneath the Continents. Geophysical Monograph Series. American Geophysical Union, Washington, D.C., pp. 627-648.

  • Ham A.P. and Bell T.H., 2004. Recycling of foliations during folding. J. Struct. Geol., 26, 1989–2009.

    Article  Google Scholar 

  • Hartevelt J., 1970. Geology of the Upper Segre and Valira valleys, Central Pyrenees, Andorra/Spain. Sheet 10, 1: 50.000. Leidse Geologische Mededelingen, 45, 167–236.

    Google Scholar 

  • Hirt A.M., Schmidt V. and Almquist B.S.G., 2008. Understanding magnetic fabrics. Geotect. Res., 95, 65–67.

    Article  Google Scholar 

  • Holl J.E. and Anastasio D.J., 1995. Cleavage development within a foreland fold and thrust belt, southern Pyrenees, Spain. J. Struct. Geol., 17, 357–369.

    Article  Google Scholar 

  • Housen B.A. and van der Pluijm B.A., 1990. Chlorite control of correlations between strain and anisotropy of magnetic susceptibility. Phys. Earth Planet. Inter., 61, 315–323.

    Article  Google Scholar 

  • Housen B.A., Richter C. and van der Pluijm B.A., 1993. Composite magnetic anisotropy fabrics: experiments, numerical models, and implications for the quantification of rock fabrics. Tectonophysics, 220, 1–12.

    Article  Google Scholar 

  • Hrouda F., 1982. Magnetic anisotropy of rocks and its application in geology and geophysics. Geophys. Surv., 5, 37–82.

    Article  Google Scholar 

  • Hrouda F., 1987. Mathematical model relationship between the paramagnetic anisotropy and strain in slates. Tectonophysics, 142, 323–327.

    Article  Google Scholar 

  • Hrouda F., 1994. A technique for the measurement of thermal changes of magnetic susceptibility of weakly magnetic rocks by the CS-2 apparatus and KLY-2 Kappabridge. Geophys. J. Int., 118, 604–612.

    Article  Google Scholar 

  • Hudleston P.J. and Treagus S.H., 2010. Information from folds: a review. J. Struct. Geol., 32, 2042–2071.

    Article  Google Scholar 

  • Izquierdo-Llavall E., Casas-Sainz A.M. and Oliva-Urcia B., 2013. Heterogeneous deformation recorded by magnetic fabrics in the Pyrenean Axial Zone. J. Struct. Geol., 57, 97–113.

    Article  Google Scholar 

  • Izquierdo-Llavall E., Casas-Sainz A.M., Oliva-Urcia B., Burmester R., Pueyo E.L. and Housen B.A., 2015. Multi-episodic remagnetization related to deformation in the Pyrenean Internal Sierras. Geophys. J. Int., 201, 891–914.

    Article  Google Scholar 

  • Jackson M., 1991. Anisotropy of magnetic remanence: A brief review of mineralogical sources, physical origins, and geological applications, and comparison with susceptibility anisotropy-Springer. Pure Appl. Geophys., 136, 1–28.

    Article  Google Scholar 

  • Jamison W.R., 1987. Geometric analysis of fold development in overthrust terranes. J. Struct. Geol., 9, 207–219.

    Article  Google Scholar 

  • Jelinek V., 1977. The statistical Theory of Measuring Anisotropy of Magnetic Susceptibility of Rocks and its Application. Geofyzika, Brno, Czech Republic, 88 pp.

    Google Scholar 

  • Jelinek V., 1981. Characterization of the magnetic fabric of rocks. Tectonophysics, 79, 63–70.

    Article  Google Scholar 

  • Kadzialko-Hofmokl M., Mazur S., Werner T. and Kruczyk J., 2004. Relationships between magnetic and structural fabrics revealed by Variscan basement rocks subjected to heterogeneous deformation-a case study from the Kłodzko Metamorphic Complex, Central Sudetes, Poland. Geol. Soc. London Spec. Publ., 238, 475–491.

    Article  Google Scholar 

  • Kligfield R., Owens W.H. and Lowrie W., 1981. Magnetic susceptibility anisotropy, strain, and progressive deformation in Permian sediments from the Maritime Alps (France). Earth Planet. Sci. Lett., 55, 181–189.

    Article  Google Scholar 

  • Kneen N.S., 1976. The relationship between the magnetic and strain fabrics of some hematitebearing Welsh slates. Earth Planet. Sci. Lett., 31, 413–416.

    Article  Google Scholar 

  • Labaume P., Séguret M. and Seyve C., 1985. Evolution of a turbiditic foreland basin an analogy with an accretionary prism: Example of the Eocene South-Pyrenean basin. Tectonics, 4, 661–685.

    Article  Google Scholar 

  • Larrasoaña J.C., Pueyo-Morer E.L. and Parés J.M., 2004. An integrated AMS, structural, paleo-and rock-magnetic study of Eocene marine marls from the Jaca-Pamplona Basin (Pyrenees, N Spain): New insights into the timing of magnetic fabric acquisition in weakly deformed mudrocks. In: Martin-Hernandez F., Luneburg C.M., Aubourg C. and Jackson M. (Eds), Magnetic Fabric: Methods and Applications. Geol. Soc. London Spec.l Publ., 238, 127–143.

    Google Scholar 

  • Lüneburg C.M., Lampert S.A., Lebit H.D., Hirt A.M., Casey M. and Lowrie W., 1999. Magnetic anisotropy, rock fabrics and finite strain in deformed sediments of SW Sardinia (Italy). Tectonophysics, 307, 51–74.

    Article  Google Scholar 

  • Martínez-Peña M.B. and Casas-Sainz A.M., 2003. Cretaceous-Tertiary tectonic inversion of the Cotiella Basin (southern Pyrenees, Spain). Int. J. Earth Sci., 92, 99–113.

    Google Scholar 

  • Mamtani M.A. and Sengupta P., 2010. Significance of AMS analysis in evaluating superposed folds in quartzites. Geol. Mag., 147, 910–918.

    Article  Google Scholar 

  • Mamtani M.A., Greiling R.O., Karanth R.V. and Merh S.S., 1999. Orogenic deformation and its relationship to AMS fabric-an example from the southern margin of the Aravalli Mountain Belt, India. In: Radhakrishna T. and Piper J.D. (Eds), The Indian Subcontinent and Gondwana: a Palaeomagnetic and Rock Magnetic Perspective. Geol. Soc. India Memoir, 44, 9–24.

    Google Scholar 

  • Matte P., 2001. The Variscan collage and orogeny (480-290Ma) and the tectonic definition of the Armorica microplate: a review. Terra Nova, 13, 122–128.

    Article  Google Scholar 

  • Mattei M., Sagnotti L., Faccena C. and Funiciello R., 1997. Magnetic fabric of weakly deformed clay-rich sediments in the Italian peninsula: relationship with compressional and extensional tectonics. Tectonophysics, 271, 107–122.

    Article  Google Scholar 

  • Mey P.H.W., 1968. Geology of the Upper Ribargozana and Tor valleys, Central Pyrenees, Spain. Sheet 8, 1: 50.000. Leidse Geologische Mededelingen, 41, 229–292.

    Google Scholar 

  • Mochales T., Casas A.M., Pueyo E.L. and Barnolas A., 2012. Rotational velocity for oblique structures (Boltaña anticline, southern Pyrenees). J. Struct. Geol., 35, 2–16.

    Article  Google Scholar 

  • Mukherji A., Chaudhuri A.K. and Mamtani M.A., 2004. Regional scale strain variations in the Banded Iron Formations of Eastern India: results from anisotropy of magnetic susceptibility studies. J. Struct. Geol., 26, 2175–2189.

    Article  Google Scholar 

  • Muñoz J.A., 1992. Evolution of a continental collision belt: ECORS-Pyrenees crustal balanced cross-section. In: McClay K.M. (Ed.), Thrust Tectonics. Springer-Verlag, Dordrecht, The Netherlands, 235-246.

    Google Scholar 

  • Muñoz J.A., Beamud E., Fernández Ó., Arbués P., Dinarés-Turell J. and Poblet J., 2013. The Ainsa Fold and thrust oblique zone of the central Pyrenees: Kinematics of a curved contractional system from paleomagnetic and structural data. Tectonics, 32, 1142–1175.

    Article  Google Scholar 

  • Nye J.F., 1957. Physical Properties of Crystals. Oxford University Press, Oxford, U.K.

    Google Scholar 

  • Oliva-Urcia B., 2004. Geometría y cinemática rotacional en las Sierras Interiores y Zona Axial (sector de Bielsa) a partir del análisis estructural y paleomagnético. PhD Thesis. University of Zaragoza, Zaragoza, Spain, 290 pp.

    Google Scholar 

  • Oliva-Urcia B., Larrasoaña J.C., Pueyo E.L., Gil A., Mata P., Parés J.M., Schleicher A.M. and Pueyo O., 2009. Disentangling magnetic subfabrics and their link to deformation processes in cleaved sedimentary rocks from the Internal Sierras (west central Pyrenees, Spain). J. Struct. Geol., 31, 163–176.

    Article  Google Scholar 

  • Oliva-Urcia B. and Pueyo E.L., 2007. Rotational basement kinematics deduced from remagnetized cover rocks (Internal Sierras, southwestern Pyrenees). Tectonics, 26, TC4014.

    Article  Google Scholar 

  • Oliva-Urcia B., Román-Berdiel T., Casas A.M., Bógalo M.F., Osácar M.C. and García-Lasanta C., 2013. Transition from extensional to compressional magnetic fabrics in the Cretaceous Cabuérniga basin (North Spain). J. Struct. Geol., 46, 220–234.

    Article  Google Scholar 

  • Parés J.M., van der Pluijm B.A. and Dinarès-Turell J., 1999. Evolution of magnetic fabrics during incipient deformation of mudrocks (Pyrenees, northern Spain). Tectonophysics, 307, 1–14.

    Article  Google Scholar 

  • Poblet J., 1991. Estructura herciniana i alpina del vessant sud de la zona axial del Pirineu central. PhD Thesis, Universidad de Barcelona, Barcelona, Spain (in Spanish).

    Google Scholar 

  • Price N.J. and Cosgrove J.W., 1990. Analyses of Geological Structures. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Pueyo E.L., Millán H. and Pocoví A., 2002. Rotation velocity of a thrust: a paleomagnetic study in the External Sierras (Southern Pyrenees). Sediment. Geol., 146, 191–208.

    Article  Google Scholar 

  • Ramberg H., 1963. Fluid dynamics of viscous buckling applicable to folding of layered rocks. Bull. Amer. Assoc. Petrol. Geol., 47, 484–505.

    Google Scholar 

  • Ramberg H., 1964. Selective buckling of composite layers with contrasted rheological properties. Tectonophysics, 1, 307–341.

    Article  Google Scholar 

  • Ramsay J.G., 1967. Folding and Fracturing of Rocks. McGraw-Hill Companies, New York.

    Google Scholar 

  • Ramsay J.G. and Huber M.I., 1987. The Techniques of Modern Structural Geology: Folds and Fractures. Volume 2. Academic Press, New York.

    Google Scholar 

  • Rathore J.S. and Henry B., 1982. Comparison of strained magnetic fabrics in Dalradian rocks from the Southwest Highlands of Scotland. J. Struct. Geol., 4, 373–384.

    Article  Google Scholar 

  • Roberts A.P. and Pillans B.J., 1993. Rock magnetism of lower/middle Pleistocene marine sediments, Wanganui basin, New Zeland. Geophys. Res. Lett., 20, 839–842.

    Article  Google Scholar 

  • Rodríguez L., Cuevas J. and Tubía J.M., 2014. Structural evolution of the sierras interiores (Aragón and Tena Valleys, South Pyrenean Zone): tectonic implications. J. Geol., 122, 99–111.

    Article  Google Scholar 

  • Rodríguez-Pintó A., Pueyo E.L., Calvín P., Sánchez E., Ramajo J., Casas A.M., Ramón M.J., Pocoví A., Barnolas A. and Román T., 2016. Rotational kinematics of a curved fold: a structural and paleomagnetic study in the Balzes anticline (Southern Pyrenees). Tectonophysics, 677-678, 171–189.

    Article  Google Scholar 

  • Sanz-López J., 2004. Silúrico, Devónico y Carbonífero pre-y sin-varisco de los Pirineos. In: Vera J. (Ed.), Geología de España. SGE-IGME, Madrid, Spain, 250-254 (in Spanish).

  • Séguret M., 1972. Étude tectonique des nappes et séries décollées de la partie centrale du versant sud des Pyrénées: caractère synsédimentaire, rôle de la compression et de la gravité. PhD Thesis. Publications de l’Université des sciences et techniques du Languedoc (USTELA), Université de Montpellier, Montpellier, France (in French).

    Google Scholar 

  • Soto R., Casas A.M., Storti F. and Faccenna C., 2002. Role of lateral thickness variations on the development of oblique structures at the Western end of the South Pyrenean Central Unit. Tectonophysics, 350, 215–235.

    Article  Google Scholar 

  • Soto R., Larrasoaña J.C., Arlegui L., Beamud E., Oliva-Urcia B. and Simón J.L., 2009. Reliability of magnetic fabric of weakly deformed mudrocks as a palaeostress indicator in compressive settings. J. Struct. Geol., 31, 512–522.

    Article  Google Scholar 

  • Soto R., Storti F. and Casas-Sainz A.M., 2006. Impact of backstop thickness lateral variations on the tectonic architecture of orogens: insights from sandbox analogue modelling and application to the Pyrenees. Tectonics, 25, TC2005, DOI: 10.1029/2004TC001693.

    Article  Google Scholar 

  • Stone D.B., 1962. Anisotropic magnetic susceptibility measurements on a phonolite and on a folded metamorphic rock. Geophysics, 62, 375–380.

    Google Scholar 

  • Suppe J., 1985. Principles of Structural Geology. Prentice Hall, New York.

    Google Scholar 

  • Tarling D.H. and Hrouda F., 1993. The Magnetic Anisotropy of Rocks. Chapman & Hall, London, U.K., 217 pp.

    Google Scholar 

  • Tavani S., Storti F., Fernández Ó., Muñoz J.A. and Salvani F., 2006. 3-D deformation pattern analysis and evolution of the Anisclo anticline, southern Pyrenees. J. Struct. Geol., 28, 695–712.

    Article  Google Scholar 

  • Teixell A., 1992. Estructura alpina en la transversal de la terminación occidental de la Zona Axial pirenaica. PhD Thesis. Universitat de Barcelona, Barcelona, Spain 252 pp. (jn Spanish).

    Google Scholar 

  • Teixell A., 1996. The Ansó transect of the southern Pyrenees: basement and cover thrust geometries. J. Geol. Soc., 153, 301–310.

    Article  Google Scholar 

  • Teixell A., 1998. Crustal structure and orogenic material budget in the west central Pyrenees. Tectonics, 17, 395–406.

    Article  Google Scholar 

  • Treagus S.H. and Fletcher R.C., 2009. Controls of folding on different scales in multilayered rocks. J. Struct. Geol., 31, 1340–1349.

    Article  Google Scholar 

  • van Hise 1894. Principles of North American Precambiaran geology. US Geol. Surv. Am. Rep., 16, 581–843.

    Google Scholar 

  • van Lunsen H., 1970. Geology of the Ara-Cinca region, Spanish Pyrenees, Province of Huesca. PhD Thesis. University of Utrecht, Utrecht, The Netherlands.

    Google Scholar 

  • Vergés J. and Muñoz J.A., 1990. Thrust sequence in the southern central Pyrenees. Bulletin de la Societé Géologique de France, 6, 265–271.

    Article  Google Scholar 

  • Watkinson A.J. and Cobbold P.R., 1981. Axial directions of folds in rocks with linear/planar fabrics. J. Struct. Geol., 3, 211–217.

    Article  Google Scholar 

  • Woodcock N.H., 1977. Specification of fabric shapes using an eigenvalue method. Geol. Soc. Am. Bull., 88, 1231–1236.

    Article  Google Scholar 

  • Ziegler P.A., 1990. Collision related intra-plate compression deformations in Western and Central Europe. J. Geodyn., 11, 357–388.

    Article  Google Scholar 

  • Zwart H.J., 1963. The structural evolution of the Paleozoic of the Pyrenees. Geol. Rundsch., 53, 170–205.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belén Oliva-Urcia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliva-Urcia, B., Gil-Peña, I., Soto, R. et al. New insights into asymmetric folding by means of the anisotropy of magnetic susceptibility, Variscan and Pyrenean folds (SW Pyrenees). Stud Geophys Geod 62, 291–322 (2018). https://doi.org/10.1007/s11200-017-0143-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-017-0143-6

Keywords

Navigation