Studia Geophysica et Geodaetica

, Volume 61, Issue 3, pp 429–452 | Cite as

S-system theory applied to array-based GNSS ionospheric sensing

  • Amir Khodabandeh
  • Peter J. G. Teunissen


The GPS carrier-phase and code data have proven to be valuable sources of measuring the Earth’s ionospheric total electron content (TEC). With the development of new GNSSs with multi frequency data, many more ionosphere-sensing combinations of different precision can be formed as input of ionospheric modelling. We present the general way of interpreting such combinations through an application of S-system theory and address how their precision propagates into that of the unbiased TEC solution. Presenting the data relevant to TEC determination, we propose the usage of an array of GNSS antennas to improve the TEC precision and to expedite the rather long observational time-span required for high-precision TEC determination.


singularity-system theory Global Navigation Satellite Systems (GNSS) total electron content (TEC) ionospheric estimability array-based setup 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Salam M. and Gao Y., 2004. Precise GPS atmosphere sensing based on un-differenced observations. In: Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004). The Institute of Navigation, Manassas, VA, 933–940.Google Scholar
  2. Azpilicueta F., Brunini C. and Radicella S., 2006. Global ionospheric maps from GPS observations using modip latitude. Adv. Space Res., 38, 2324–2331.CrossRefGoogle Scholar
  3. Baarda W., 1973. S-Transformations and Criterion Matrices. Technical Report. Publ. Geodesy, New Series, 5(1). Netherlands Geodetic Commission, Delft, The Netherlands ( Scholar
  4. Banville S. and Langley R.B., 2011. Defining the basis of an integer-levelling procedure for estimating slant total electron content. In: Proceedings of the 24th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2011). The Institute of Navigation, Manassas, VA, Proceedings of ION GNSS 2011, Portland, OR, pp 2542–2551Google Scholar
  5. Brunini C. and Azpilicueta F.J., 2009. Accuracy assessment of the GPS-based slant total electron content. J. Geodesy, 83, 773–785.CrossRefGoogle Scholar
  6. Brunini C. and Azpilicueta F.J., 2010. GPS slant total electron content accuracy using the single layer model under different geomagnetic regions and ionospheric conditions. J. Geodesy, 84, 293–304.CrossRefGoogle Scholar
  7. Ciraolo L., Azpilicueta F.J., Brunini C., Meza A. and Radicella S., 2007. Calibration errors on experimental slant total electron content (TEC) determined with GPS. J. Geodesy, 81, 111–120.CrossRefGoogle Scholar
  8. Henderson H.V., Pukelsheim F. and Searle S.R., 1983. On the history of the Kronecker product. Linear Multilinear Algebra, 14, 113–120.CrossRefGoogle Scholar
  9. Hernández-Pajares M., Zornoza J., Subirana J.S., Farnworth R. and Soley S., 2005. EGNOS test bed ionospheric corrections under the October and November 2003 storms. IEEE Trans. Geosci. Remote Sensing, 43, 2283–2293.CrossRefGoogle Scholar
  10. Jin S.G., Jin R. and Li D., 2016. Assessment of BeiDou differential code bias variations from multi-GNSS network observations. Ann. Geophys., 34, 259–269.CrossRefGoogle Scholar
  11. Khodabandeh A. and Teunissen P.J.G., 2014. Array-based satellite phase bias sensing: theory and GPS/BeiDou/QZSS results. Meas. Sci. Technol., 25, 095801.CrossRefGoogle Scholar
  12. Khodabandeh A. and Teunissen P.J.G., 2015a. An analytical study of PPP-RTK corrections: precision, correlation and user-impact. J. Geodesy, 89, 1109–1132.CrossRefGoogle Scholar
  13. Khodabandeh A. and Teunissen P.J.G., 2015b. Single-epoch GNSS array integrity: an analytical study. In: Sneeuw N., Novák P., Crespi M. and Sansò F. (Eds), VIII Hotine-Marussi Symposium on Mathematical Geodesy. International Association of Geodesy Symposia, 142. Springer International Publishing, Cham, Switzerland, 263–272.Google Scholar
  14. Khodabandeh A. and Teunissen P.J.G., 2016. Array-aided multifrequency GNSS ionospheric sensing: estimability and precision analysis. IEEE Trans. Geosci. Remote Sensing, 54, 5895–5913.CrossRefGoogle Scholar
  15. Komjathy A., Sparks L., Wilson B.D. and Mannucci A.J., 2005. Automated daily processing of more than 1000 ground based GPS receivers for studying intense ionospheric storms. Radio Sci., 40, RS6006.CrossRefGoogle Scholar
  16. Li B. and Teunissen P.J.G., 2013. GNSS antenna array-aided CORS ambiguity resolution. J. Geodesy, 88, 363–376.CrossRefGoogle Scholar
  17. Mannucci A., Wilson B., Yuan D., Ho C., Lindqwister U. and Runge T., 1998. A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci., 33, 565–582.CrossRefGoogle Scholar
  18. Sardon E. and Zarraoa N., 1997. Estimation of total electron content using GPS data: How stable are the differential satellite and receiver instrumental biases? Radio Sci., 32, 1899–1910.CrossRefGoogle Scholar
  19. Sardon E., Rius A. and Zarraoa N., 1994. Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations. Radio Sci., 29, 577–586.CrossRefGoogle Scholar
  20. Schaer S., 1999. Mapping and Predicting the Earth’s Ionosphere Using the Global Positioning System. PhD Thesis. University of Bern, Bern, Switzerland.Google Scholar
  21. Schaer S., Beutler G., Mervart L., Rothacher M. and Wild U., 1995. Global and regional ionosphere models using the GPS double difference phase observable. In: Gendt G. and Dick G. (Eds), IGS Workshop Proceedings: Special Topics and New Directions. GeoForschungsZentrum, Potsdam, Germany, 77–92.Google Scholar
  22. Teunissen P.J.G., 1985. Generalized inverses, adjustment, the datum problem and S-transformations. In: Grafarend E.W. and Sansò F. (Eds), Optimization and Design of Geodetic Networks. Springer-Verlag, Berlin, Heidelberg, Germany.Google Scholar
  23. Teunissen P.J.G., 2012. A-PPP: array-aided precise point positioning with global navigation satellite systems. IEEE Trans. Signal Process., 60, 2870–2881.CrossRefGoogle Scholar
  24. Yue X., Schreiner W.S., Kuo Y.H., Braun J.J., Lin Y.C. and Wan W., 2014. Observing system simulation experiment study on imaging the ionosphere by assimilating observations from ground GNSS, LEO-based radio occultation and ocean reflection, and cross link. IEEE Trans. Geosci. Remote Sensing, 52, 3759–3773.CrossRefGoogle Scholar
  25. Zhang B. and Teunissen P.J.G., 2015. Characterization of multi-GNSS between-receiver differential code biases using zero and short baselines. Sci. Bull., 60, 1840–1849.CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2017

Authors and Affiliations

  1. 1.GNSS Research Centre, Department of Spatial SciencesCurtin University of TechnologyPerthAustralia
  2. 2.Department of Geoscience and Remote SensingDelft University of TechnologyDelftThe Netherlands

Personalised recommendations