Skip to main content

The usability of the undifferenced positioning techniques in establishing regional geodetic control networks: a case study in Poland

Abstract

Recently undifferenced Precise Point Positioning (PPP) technique has become a subject of interest not only among researchers, but also satellite positioning practitioners like surveyors and engineers. Along with the development of precise clocks and orbits products, and the improvement of models mitigating interfering phenomena like atmospheric refraction, PPP has become an alternative to relative positioning in many field applications. This study concerns the usability of Undifferenced Positioning techniques in establishing geodetic control networks. Satellite observations from 13 stations equipped with high-end receivers and survey grade commercial receivers were processed using the NAvigation Package for Earth Observation Satellites -NAPEOS v. 3.3.1. In the study the standard PPP (float) and Undifferenced Network solution with clocks/orbits fixed strategies of post-processing were carried out using various observing intervals (30 min., 1 h, 2 h, 4 h, daily). The high accuracy results obtained with PPP and UD Network solution predisposes these strategies for the use in surveying tasks requiring even centimeter positioning accuracy.

This is a preview of subscription content, access via your institution.

References

  1. Araszkiewicz A., Bogusz J., Figurski M., Szafranek K., 2010. Application of short-time GNSS solutions to geodynamical studies. Acta Geodyn. Geomat., 7, 295–302.

    Google Scholar 

  2. Banville S., 2016. GLONASS ionosphere-free ambiguity resolution for precise point positioning. J. Geodesy. 90, 487–496.

    Article  Google Scholar 

  3. Blewitt G., 1989. Carrier phase ambiguity resolution for the global positioning system applied to geodetic baselines up to 2000 km. J. Geophys. Res., 94(B8), 10187–10203.

    Article  Google Scholar 

  4. Boucher C. and Altamimi Z., 2011. Memo: Specifications for Reference Frame Fixing in the Analysis of a EUREF GPS Campaign. http://etrs89.ensg.ign.fr/memo-V8.pdf.

    Google Scholar 

  5. Cai C. and Gao Y., 2007. Precise point positioning using combined GPS and GLONASS observations. Journal of Global Positioning System, 6, 13–22.

    Article  Google Scholar 

  6. Chen J., Xiao P., Zhang Y. and Wu B., 2013. GPS/GLONASS System bias estimation and application in GPS/GLONASS combined positioning. In: Sun J., Jiao W., Wu H. and Shi C. (Eds), China Satellite Navigation Conference (CSNC) 2013 Proceedings. Lecture Notes in Electrical Engineering, 244. Springer, Heidelberg, Germany, 323–333.

    Article  Google Scholar 

  7. Chen W., Hu C.W., Gao S., Chen Y.Q. and Ding X.L., 2009. Error correction models and their effects on GPS precise point positioning. Surv. Rev., 41, 238–252.

    Article  Google Scholar 

  8. Choy S., Zhang S., Lahaye F. and Héroux P., 2013. A comparison between GPS-only and combined GPS +GLONASS precise point positioning. J. Spat. Sci., 58, 169–190.

    Article  Google Scholar 

  9. Chuang S., Wenting Y., Weiwei S., Yidong L., Yibin Y. and Rui A., 2013. GLONASS pseudorange inter-channel biases and their effects on combined GPS/GLONASS precise point positioning. GPS Solut., 17, 439–451.

    Article  Google Scholar 

  10. Collins P., 2008. Isolating and estimating undiferenced GPS integer ambiguities. Proceedings of the 2008 National Technical Meeting of the Institute of Navigation, January 28–30, 2008. 720–732.

    Google Scholar 

  11. Dong D. and Bock Y., 1989. Global positioning system network analysis with phase ambiguity resolution applied to crustal deformation studies in California. J. Geophys. Res., 94(B4), 3949–3966.

    Article  Google Scholar 

  12. El-Mowafy A., 2009. Alternative postprocessing relative positioning approach based on precise point positioning J. Surv. Eng., 135(2), 56–65.

    Article  Google Scholar 

  13. El-Rabbany A., 2006. Introduction to GPS: The Global Positioning System, Second Edition. Artech House, Toronto, Canada

    Google Scholar 

  14. Ge M., Gendt G., Rothacher M., Shi C. and Liu J., 2008. Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. J. Geodesy, 82, 389–399.

    Article  Google Scholar 

  15. Geng J., Teferle F.N., Shi C., Meng X., Dodson A.H. and Liu J., 2009. Ambiguity resolution in precise point positioning with hourly data. GPS Solut., 13, 263–270.

    Article  Google Scholar 

  16. Geng J., Meng X., Teferle F.N. and Dodson A.H., 2010. Performance of precise point positioning with ambiguity resolution for 1-to 4-hour observation periods. Surv. Rev., 42, 155–165.

    Article  Google Scholar 

  17. Guo F., Zhang X.H. and Wang J., 2015. Timing group delay and differential code bias corrections for BeiDou positioning. J. Geodesy, 89, 427–445.

    Article  Google Scholar 

  18. Han S.C., Kwon J.H. and Jekeli C., 2001. Accurate absolute GPS positioning through satellite clock error estimation. J. Geodesy, 77, 33–43.

    Article  Google Scholar 

  19. Hazewinkel M., 1994. Orthogonalization. In: Hazewinkel M. (Ed.), Encyclopedia of Mathematics. Springer, Dordrecht, The Netherlands, ISBN 978-1-55608-010-4.

    Google Scholar 

  20. Hofmann-Wellenhof B., Lichtenegger H. and Collins J., 2003. Global Positioning System: Theory and Practice. Springer, New York.

    Google Scholar 

  21. Jin S., Park J.U., Cho J.H. and Park P.H., 2007. Seasonal variability of GPS-derived zenith tropospheric delay (1994–2006) and climate implications. J. Geophys. Res., 112, DOI: 10.1029/2006JD007772.

  22. Khodabandeh A. and Teunissen P.J.G., 2015. An analytical study of PPP-RTK corrections: precision, correlation and user-impact. J. Geodesy, 89, 1109–1132.

    Article  Google Scholar 

  23. Khodabandeh A. and Teunissen P.J.G., 2016. PPP-RTK and inter-system biases: the ISB look-up table as a means to support multi-system PPP-RTK. J. Geodesy, 90, 837–851.

    Article  Google Scholar 

  24. Kouba J. and Heroux P., 2001. Precise point positioning using IGS orbit and clock products. GPS Solut., 5(2), 12–28.

    Article  Google Scholar 

  25. Kouba J., 2009. A Guide to Using International GNSS Service (IGS) Products. Geodetic Survey Division, Natural Resources Canada (http://igscb.jpl.nasa.gov/igscb/resource/pubs /UsingIGSProductsVer21.pdf).

    Google Scholar 

  26. Laurichesse D., Mercier F., Berthias J. P., Broca P. and Cerri L., 2007. Integer ambiguity resolution on undiferenced GPS phase measurements and its application to PPP. Proceedings of the 20th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2007), 839–848.

    Google Scholar 

  27. Montenbruck O. and Hauschild A., 2014. Differential code bias estimation using multi-GNSS observations and global ionosphere maps. Proceedings of the ION-ITM 2014, San Diego, CA, 802–812.

    Google Scholar 

  28. Odijk D. and Teunissen P.J.G., 2013. Characterization of between-receiver GPS-Galileo intersystem biases and their effect on mixed ambiguity resolution. GPS Solut., 17(4), 521–533.

    Article  Google Scholar 

  29. Paziewski J., Sieradzki R. and Wielgosz P., 2015. Selected properties of GPS and Galileo-IOV receiver intersystem biases in multi-GNSS data processing. Meas. Sci. Technol., 26, 95008–95016

    Article  Google Scholar 

  30. Pei X., Chen J., Wang J., Zhang Y. and Li H., 2012. Application of inter-system hardware delay bias in GPS/GLONASS PPP. In: Sun J., Liu J., Yang Y. and Fan S. (Eds), China Satellite Navigation Conference (CSNC) 2012 Proceedings. Lecture Notes in Electrical Engineering, 160, Springer, Heidelberg, Germany, 381–387.

    Article  Google Scholar 

  31. Petit G. and Luzum B., 2010. IERS Conventions 2010. IERS Technical Note 36, Verlag des Bundesamts fuer Kartographie und Geodaesie, Frankfurt am Main, Germany.

  32. Rabbou M.A. and El-Rabbany A., 2015. PPP accuracy enhancement using GPS/GLONASS observations in kinematic mode. Positioning, 6(1), 1–6.

    Article  Google Scholar 

  33. Reussner N. and Wanninger L., 2011. GLONASS inter-frequency biases and their effects on RTK and PPP carrier-phase ambiguity resolution. Proceedings of the ION GNSS 2011, Portland, Oregon, 712–716.

    Google Scholar 

  34. Roberts G.W., Tang X. and Brown Ch., 2015. A review of satellite positioning systems for civil engineering. Proc. Inst. Civil Eng.-Civil Eng., 168, 185–192.

    Article  Google Scholar 

  35. Shi Ch., Yi W., Song W., Lou Y., Yao Y. and Zhang R., 2013. GLONASS pseudorange interchannel biases and their effects on combined GPS/GLONASS precise point positioning. GPS Solut., 17(4), 439–451.

    Article  Google Scholar 

  36. Springer T.A., 2009. NAPEOS Mathematical Models and Algorithms, DOPS-SYS-TN-0100-OPSGN, issue 1.0. European Space Operation Center, ESA, Darmstadt, Germany.

    Google Scholar 

  37. Teunissen P.J.G. and Khodabandeh A., 2015. Review and principles of PPP-RTK methods. J. Geodesy, 89, 217–240.

    Article  Google Scholar 

  38. Wang F., Chen X. and Guo F., 2015. GPS/GLONASS combined precise point positioning with receiver clock modeling. Sensors, 15, 15478–15493.

    Article  Google Scholar 

  39. Wanninger L., 2012. Carrier-phase inter-frequency biases of GLONASS receivers. J. Geodesy, 86, 139–148.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Krzan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krzan, G. The usability of the undifferenced positioning techniques in establishing regional geodetic control networks: a case study in Poland. Stud Geophys Geod 62, 17–37 (2018). https://doi.org/10.1007/s11200-016-0585-2

Download citation

Keywords

  • PPP
  • ambiguity resolution
  • ETRF2000