Magnetic mineral diagenesis in anoxic laminated sediments from the Southern Gulf of California

Abstract

Diagenetic effects on the magnetic mineralogy in marine sediments have long been investigated, including oxidation/reduction reactions, magnetic dilution, formation of iron sulfides and oxides, magnetization acquisition mechanisms and reliability of the paleomagnetic record. This study investigates diagenetic effects in low-oxygen depositional environments characterized by recent and past magnetic mineral dissolution zones. We analyze a marine sequence from the Alfonso Basin in the southern Gulf of California in which the topmost sediments show diagenetic effects marked by high magnetic enhancement factors. The susceptibility logs show high values at the top sediments with well-defined small amplitude low frequency fluctuations down core. Magnetic hysteresis loops indicate low coercivity saturation, characteristic of magnetites and low-tititanomagnetites with varying paramagnetic contributions. Intensity of natural remanent, isothermal and anhysteretic magnetizations and coercivity parameters show similar variation patterns with depth. The anhysteretic remanence intensity-susceptibility ratio shows an inverse correlation to magnetic susceptibility, indicating varying concentration of fine grained single domain and superparamagnetic particles. The magnetic logs record diagenetic changes and magnetite authigenesis, with preserved recent and old dissolution zones marked by enriched single-domain/pseudo-singledomain/multi-domain magnetite in between the dissolution fronts. The oxidation/reduction processes relate to climatic and water/sediment interface factors controlling the dissolution processes, which occur in the Alfonso Basin anoxic conditions.

This is a preview of subscription content, access via your institution.

References

  1. Alvarez M.C., Pérez-Cruz L. and Hernández-Contreras R., 2012. Coccolithophore and silicoflagellate records in Middle-Late Holocene sediments from La Paz Basin (Gulf of California): Paleoclimatic implications. Stratigraphy, 9, 169–181.

    Google Scholar 

  2. Barron J.A., Bukry D. and Bischoff J.L., 2004. High resolution paleoceanography of the Guaymas Basin, Gulf of California during the past 15,000 years. Mar. Micropalentol., 50, 185–207.

    Article  Google Scholar 

  3. Barron J.A., Bukry D. and Dean W.E., 2005. Paleoceanographic history of the Guaymas basin, Gulf of California, during the past 15,000 years based on diatoms, silicoflagellates, and biogenic sediments. Mar. Micropaleontol., 56, 81–102.

    Article  Google Scholar 

  4. Berner R.A., 1980. Early Diagenesis. Princeton University Press, Princeton, NJ.

    Google Scholar 

  5. Blanchet C.L., Thouveney N. and Vidal L., 2009. Formation and preservation of greigite (Fe3S4) in sediments from the Santa Barbara Basin: Implications for paleoenvironmental changes during the past 35 ka. Paleoceanography, 24, PA2224, DOI: 10.1029/2008PA001719.

    Article  Google Scholar 

  6. Bloemendal J., King J.W., Hall F.R. and Doh S.-J., 1992. Rock magnetism of late Neogene and Pleistocene deep-sea sediments -relationship to sediment source, diagenetic processes and sediment lithology. J. Geophys. Res., 97, 4361–4375.

    Article  Google Scholar 

  7. Brachfeld S., Barletta F., St-Onge G., Darby D. and Ortiz J.D., 2009. Impact of diagenesis on the environmental magnetic record from a Holocene sedimentary sequence from the Chukchi-Alaskan margin, Artic Ocean. Global Planet. Change, 68, 100–114.

    Article  Google Scholar 

  8. Canfield D.E. and Thamdrup B., 2009. Towards a consistent classification scheme for geochemical environments, or, why we wish the term ‘suboxic’ would go away. Geobiology, 7, 385–392.

    Article  Google Scholar 

  9. Chiang L., Vasiliev J., van Baak C., Krijsman W., Dekkers M.J., Roberts A.P., Gerald J.D.F., van Hoesnel A. and Winklhofer M., 2014. Identification and environmental interpretation of diagenetic and biogenic greigite in sediments: A lesson from the Messinian Black Sea. Geochem. Geophys. Geosyst., 15, 3612–3627.

    Article  Google Scholar 

  10. Day R., Fuller M. and Schmidt P.V., 1977. Hysteresis properties of titanomagnetites:grain-size and compositional dependence. Phys. Earth Planet. Inter., 13, 260–267.

    Article  Google Scholar 

  11. De Diego T.A., 1998. Oxygen-Related Biofacies in Slope Sediments from the Western Gulf of California, Mexico. MSc Thesis. Geological Sciences, University of Southern California, Los Angeles, CA, 132 pp.

    Google Scholar 

  12. Dinares-Turell J., Hoogakker B.A.A., Roberts A.P., Rohling E.J. and Sagnotti L., 2003. Quaternary climatic control of biogenic magnetite production and eolian dust input in cores from the Mediterranean Sea. Palaeogeogr. Palaeoclimatol. Palaecol., 190, 195–209.

    Article  Google Scholar 

  13. Donegan D. and Shrader H., 1982. Biogenic and abiogenic components of laminated hemipelagic sediments in the central Gulf of California. Mar. Geol., 48, 215–237.

    Article  Google Scholar 

  14. Douglas R., Gonzalez-Yajimovich O., Ledesma-Vazquez J. and Staines-Urias F., 2007. Climate forcing, primary production and the distribution of Holocene biogenic sediments in the Gulf of California. Quat. Sci. Rev., 26, 115–129.

    Article  Google Scholar 

  15. Dunlop D.J., 1983. Viscous magnetization of 0.04-100 μm magnetites. Geophys. J. R. Astr. Soc., 74, 667–687.

    Google Scholar 

  16. Dunlop D.J., 2002. Theory and applications of the Day plot (Mrs/Ms versus Her/He) 1: Theoretical curves and tests using titanomagnetite data. J. Geophys. Res., 107, DOI: 10.1029 /2001JB000486.

  17. Froelich P., Klinkhammer G.P., Bender M.L., Luedtke N.A., Heath G.R., Cullen D., Dauphin P., Hammond D., Hartman B. and Maynard V., 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta, 43, 1075–1090.

    Article  Google Scholar 

  18. Garming J.F.L., Bleil U. and Riedinger., 2005. Alteration of magnetic mineralogy at the sulfatemethane transition: Analysis of sediments from the Argentine continental slope. Phys. Earth Planet. Inter., 151, 290–308.

    Article  Google Scholar 

  19. Goldhaber M.B. and Kaplan I.R., 1980. Mechanisms of sulfur incorporation and isotope fractionation during early diagenesis in sediments of the Gulf of California. Mar. Chem., 9, 95–143.

    Article  Google Scholar 

  20. Gonzalez-Yajimovich O.E., Gorsline D.S. and Douglas R.G., 2007. Frequency and sources of basin floor turbidites in Alfonso Basin, Gulf of California, Mexico: Products of slope failures. Sediment. Geol., 199, 91–105.

    Article  Google Scholar 

  21. Hayashida A., Hattori S. and Oda H., 2007. Diagenetic modification of magnetic properties observed in a piston core (MD01-2407) from the Oki Ridge, Japan Sea. Paleogeogr. Paleoclimatol. Paleoecol., 247, 65–73.

    Article  Google Scholar 

  22. Helly J.J. and Levin L.A., 2004. Global distribution of naturally occurring marine hypoxia on continental margins. Deep-Sea Res. Part I-Oceanogr. Res. Pap., 51, 1159–1168.

    Article  Google Scholar 

  23. Hofmann A.F., Peltzer E.T., Walz P.M. and Brewer P.G., 2011. Hypoxia by degrees: Establishing definitions for a changing ocean. Deep-Sea Res. Part I-Oceanogr. Res. Pap., 58, 1212–1226.

    Article  Google Scholar 

  24. Hounslow M.W. and Maher B.A., 1999. Source of the climate signal recorded by magnetic susceptibility in Indian Ocean sediments. J. Geophys. Res., 104, 5047–5061.

    Article  Google Scholar 

  25. Jackson M., Moskowitz B., Rosenbaum J. and Kissel C., 1998. Field-dependence of AC susceptibility in titanomagnetites. Earth Planet. Sci. Lett., 157, 129–139.

    Article  Google Scholar 

  26. Karlin R., 1990. Magnetic mineral diagenesis in suboxic sediments at Bettis Site W-N, NE Pacific Ocean. J. Geophys. Res., 95, 4421–4436.

    Article  Google Scholar 

  27. Karlin R. and Levi S., 1983. Diagenesis of magnetic minerals in Recent hemipelagic sediments. Nature, 303, 327–330.

    Article  Google Scholar 

  28. Karlin R. and Levi S., 1985. Geochemical and sedimentological control of the magnetic properties of hemipelagic sediments. J. Geophys. Res., 90, 10373–10392.

    Article  Google Scholar 

  29. Kawamura N., Kawamura K. and Ishikawa N., 2008. Rock magnetic and geochemical analyses of surface sediment characteristic in deep ocean environments: A case study across the Ryukyu Trench. Earth Planets Space, 60, 179–189.

    Article  Google Scholar 

  30. Kawamura N., Ishikawa N. and Torii M., 2012. Diagenetic alteration of magnetic minerals in Labrador Sea sediments (IODP Sites U1305, U1306, and U1307). Geochem. Geophys. Geosyst., 13, Q08013 DOI: 10.1029/2012GC004213.

    Article  Google Scholar 

  31. Kruiver P.P., Dekkers M.J. and Heslop D., 2001. Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetization. Earth Planet. Sci. Lett., 189, 269–276.

    Article  Google Scholar 

  32. Leslie B.W., Lund S.P. and Hammond D.E., 1990a. Rock magnetic evidence for dissolution and authigenic growth of magnetic minerals in anoxic sediments from the California continental borderland. J. Geophys. Res., 95(B4), 4437–4452.

    Article  Google Scholar 

  33. Leslie B.W., Hammond D.E., Berelson W.M. and Lund S.P., 1990b. Diagenesis in anoxic sediments from the California continental borderland and its influence on iron, sulfur, and magnetite behavior. J. Geophys. Res., 95(B4), 4453–4470.

    Article  Google Scholar 

  34. Maher B.A. and Thompson R., 1999. Quaternary Climates, Environments and Magnetism. Cambridge University Press, Cambridge, U.K.

    Book  Google Scholar 

  35. Miao X., Mason J.A., Swinehart J.B., Loope D.B., Hanson P.R., Goble R.J. and Liu X., 2007. A 10,000 year record of dune activity, dust storms, and severe drought in the central Great Plains. Geology, 35, 119–122.

    Article  Google Scholar 

  36. Molina-Cruz A., Pérez-Cruz L. and Monreal-Gómez M.A., 2002. Laminated sediments in the Bay of La Paz, Gulf of California: a depositional cycle regulated by pluvial flux. Sedimentology, 49, 1401–1410.

    Article  Google Scholar 

  37. Monreal-Gómez M.A., Molina-Cruz A. and Salas-de-León D.A., 2001. Water masses and cyclonic circulation in Bay of La Paz, Gulf of California, during June 1998. J. Mar. Syst., 30, 305–315.

    Article  Google Scholar 

  38. Passier H.F., de Lange G.J. and Dekkers M.J., 2001. Magnetic properties and geochemistry of the active oxidation front and the youngest sapropel in the eastern Mediterranean Sea. Geophys. J. Int., 145, 604–614.

    Article  Google Scholar 

  39. Pérez-Cruz L., 2006. Climate and ocean variability during mid-late Holocene recorded in laminated sediments from Alfonso Basin, Gulf of California, Mexico. Quat. Res., 65, 401–410.

    Article  Google Scholar 

  40. Pérez-Cruz L., 2013. Hydrological changes and paleoproductivity in the Gulf of California during middle and late Holocene and their relationship with ITCZ and North American Monsoon variability. Quat. Res., 79, 138–151.

    Article  Google Scholar 

  41. Pérez-Cruz L. and Urrutia-Fucugauchi J., 2009. Magnetic mineral study of Holocene marine sediments from the Alfonso Basin, Gulf of California -implications for depositional environment and sediment sources. Geof. Int., 48, 305–318.

    Google Scholar 

  42. Pérez-Cruz L. and Urrutia-Fucugauchi J., 2010a. Holocene laminated sediments from the southern Gulf of California: geochemical, mineral magnetic and microfossil study. J. Quat. Sci., 25, 989–1000, DOI: 10.1002/jqs.1386.

    Article  Google Scholar 

  43. Pérez-Cruz L. and Urrutia-Fucugauchi J., 2010b. Characterization of distal turbidites in marine sedimentary sequences using magnetic mineral data and factor analysis of microfossil assemblages. Stud. Geophys. Geod., 54, 595–606.

    Article  Google Scholar 

  44. Pike J. and Kemp A.E.S., 1997. Early Holocene decadal-scale ocean variability recorded in Gulf of California laminated sediments. Paleoceanography, 12, 227–238.

    Article  Google Scholar 

  45. Richter C., Hayashida A., Guyodo Y., Valet J.P. and Verosub K.L., 1999. Magnetic intensity loss and core diagenesis in long-core samples from the East Cortez Basin and the San Nicolas Basin (California borderland). Earth Planets Space, 51, 329–336.

    Article  Google Scholar 

  46. Roberts A.P., 2015. Magnetic mineral diagenesis. Earth Sci. Rev., 151, 1–47.

    Article  Google Scholar 

  47. Roberts A.P., Chang L., Rowan C.J., Horng C.-S. and Florindo F., 2011. Magnetic properties of sedimentary greigite (Fe3S4): An update. Rev. Geophys., 49, RG10002.

    Article  Google Scholar 

  48. Robinson S.G., Maslin A. and McCave I.M., 1995. Magnetic susceptibility variations in upper Pleistocene deep-sea sediments of the North Atlantic: Implications for ice rafting and paleocirculation at the last glacial maximum. Paleoceanography, 10, 221–250.

    Article  Google Scholar 

  49. Rowan C.J., Roberts A.P. and Broadbent T., 2009. Reductive diagenesis, magnetite dissolution, gregite growth and paleomagnetic smoothing in marine sediments: A new view. Earth Planet. Sci. Lett., 277, 223–235.

    Article  Google Scholar 

  50. Tarduno J.A., 1995. Superparamagnetism and reduction diagenesis in pelagic sediments: Enhancement or depletion? Geophys. Res. Lett., 22, 1337–1340.

    Article  Google Scholar 

  51. Urrutia-Fucugauchi J., 1981. Some observations on short-term magnetic viscosity behavior at room temperature. Phys. Earth Planet. Inter., 26, 1–5.

    Article  Google Scholar 

  52. Verosub K.L. and Roberts A.P., 1995. Environmental magnetism: past, present and future. J. Geophys. Res., 100, 2175–2192.

    Article  Google Scholar 

  53. Viau A.E., Gajewski K., Fines P., Atkinton D.E. and Sawada M.C., 2002. Widespread evidence of 1500 yr climate variability in North America during the past 14000 yr. Geology 30, 455–458.

    Article  Google Scholar 

  54. Vigliotti L., 1997. Magnetic properties of light and dark sediment layers from the Japan Sea: Diagenetic and paleoclimatic implications. Quat. Sci. Rev., 16, 1093–1114.

    Article  Google Scholar 

  55. Worm H.U., 1998. On the superparamagnetic-stable single domain transition for magnetite, and frequency dependence of susceptibility. Geophys. J. Int., 133, 201–206.

    Article  Google Scholar 

  56. Yamazaki T., Abdeldayem A.L. and Ikehara K., 2003. Rock-magnetic changes with reduction diagenesis in Japan Sea sediments and preservation of geomagnetic secular variation in inclination during the last 30,000 years. Earth Planets Space, 55, 327–340.

    Article  Google Scholar 

  57. Zheng Y., Kissel C., Zheng H.B., Laj C. and Wang K., 2010. Sedimentation on the inner shelf of the East China Sea: magnetic properties,diagenesis and paleoclimatic implications. Mar. Geol., 268, 34–42, DOI: 10.1016/j.margeo.2009.10.009.

    Article  Google Scholar 

  58. Wilson T.R.S., Thomson J., Colley S., Hydes D.J., Higgs N.C. and Sørensen J., 1985. Early organic diagenesis: the significance of progressive subsurface oxidation fronts in pelagic sediments. Geochim. Cosmochim. Acta, 49, 811–822.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ligia Pérez-Cruz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pérez-Cruz, L., Urrutia-Fucugauchi, J. Magnetic mineral diagenesis in anoxic laminated sediments from the Southern Gulf of California. Stud Geophys Geod 62, 115–138 (2018). https://doi.org/10.1007/s11200-016-0443-2

Download citation

Keywords

  • sediment diagenesis
  • magnetic properties
  • laminated sediments
  • Holocene
  • Gulf of California