Bućko M.S., Magiera T., Pesonen L.J. and Janus B., 2009. Magnetic, geochemical, and microstructural characteristics of road dust on roadsides with different traffic volumes — case study from Finland. Water Air Soil Pollut.,
209, 295–306.
Article
Google Scholar
Castaneda-Miranda A.G., Böhnel H.N., Molina-Garza R.S. and Chaparro M.A.E. 2014. Magnetic evaluation of TSP-filters for air quality monitoring. Atmos. Environ.,
96, 163–174.
Article
Google Scholar
Chao C.Y.H., 2001. Comparison between indoor and outdoor air contaminant levels in residential buildings from passive sampler study. Build. Environ.,
36, 999–1007.
Article
Google Scholar
Day R., Fuller M. and Schmidt A., 1977. Hysteresis properties of titanomagnetite: Grain size and composition dependence. Phys. Earth Planet. Inter.,
13, 260–267.
Article
Google Scholar
Dennekamp M., Howarth S., Dick C.W., Cherrie J., Donaldson K. and Sea A., 2001. Ultrafine particles and nitrogen oxides generated by gas and electric cooking. Occup. Environ. Med.,
58, 511–516.
Article
Google Scholar
Englert N., 2004. Fine particles and human health — A review of epidemio-logical studies. Toxicol. Lett.,
149, 235–242.
Article
Google Scholar
Evans M.E. and Heller F., 2003. Environmental Magnetism: Principles and Applications of Enviromagnetics. Elsevier Science, Academic Press, San Diego, CA.
Google Scholar
Fuller C., Davis J., Cain D., Lamothe P., Fries T., Fernandez G., Vargas J. and Murillo M., 1990. Distribution and transport of sediment bound metal contaminants in the Rio Grande de Tracole, Costa Rica (Central America). Water Res.,
24, 805–812.
Article
Google Scholar
Górka-Kostrubiec B., 2015. The magnetic properties of indoor dust fractions as markers of air pollution inside buildings. Build. Environ.,
90, 186–195
Article
Google Scholar
Górka-Kostrubiec B., Jeleńska M. and Król E., 2014. Magnetic signature of indoor air pollution: household dust study. Acta Geophys.,
62, 1478–1503.
Article
Google Scholar
Guo H., Morawska L., He C., Zhang Y., Ayoko G. and Cao M., 2010. Characterization of particle number concentrations and PM2.5 in a school: influence of outdoor air pollution on indoor air. Environ. Sci. Pollut. Res.,
17, 1268–1278.
Article
Google Scholar
Halsall C.J., Maher B.A., Karloukovski V.V., Shah P. and Watkins S.J., 2008. A novel approach to investigating indoor/outdoor pollution links: Combined magnetic and PAH measurements. Atmos. Environ.,
42, 8902–8909.
Article
Google Scholar
He C., Morawska L., Hitchins J. and Gilbert D., 2004. Contribution from indoor sources to particle number and mass concentrations in residential houses. Atmos. Environ.,
38, 3405–3415.
Article
Google Scholar
Hrouda F., 2011. Models of frequency-dependent susceptibility of rocks and soils revisited and broadened. Geophys. J. Int.,
187, 1259–1269.
Article
Google Scholar
Jamriska M., Morawska L. and Clark B.A., 2000. Effect of ventilation and filtration on submicrometer particles in an indoor environment. Indoor Air,
10, 19–26.
Article
Google Scholar
Jelenska M., Hasso-Agopsowicz A., Kadzialko-Hofmokl M., Kopcewicz B., Sukhorada A., Bondar K. and Matviishina Zh., 2008. Magnetic structure of the polluted soil profiles from eastern Ukraine. Acta Geophys.,
56, 1043–1064.
Article
Google Scholar
Jordanova D., Jordanova N., Lanos Ph., Petrov P. and Tsacheva T., 2012. Magnetism of outdoor and indoor settled dust and its utilization as a tool for revealing the effect of elevated particulate air pollution on cardiovascular mortality. Geochem. Geophys. Geosyst., 13, Q08Z49.
Article
Google Scholar
Jordanova N., Jordanova D., Henry B., Goff M.L., Dimov D. and Tsacheva T., 2006. Magnetism of cigarette ashes. J. Magn. Magn. Mater.,
301, 50–66.
Article
Google Scholar
Kingham S., Briggs D., Elliott P., Fischer P. and Lebret E., 2000. Spatial variations in the concentrations of traffic-related pollutants in indoor and outdoor air in Huddersfield, England. Atmos. Environ.,
34, 905–916.
Article
Google Scholar
Kulmala M., Asmi A. and Petaja T., 1999. Indoor air aerosol model: the effect of outdoor air, filtration and ventilation on indoor concentrations. Atmos. Environ.,
33, 2133–2144.
Article
Google Scholar
Langer S., Weschler C.J., Fischer A., Beko G., Toftum J. and Clausen G., 2010. Phthalate and PAH concentrations in dust collected from 500 Danish homes and 151 Danish day-care facilities. Atmos. Environ.,
44, 2294–2301.
Article
Google Scholar
Layton D.W. and Beamer P.I., 2009. Migration of contaminated soil and airborne particulates to indoor dust. Environ. Sci. Technol.,
43, 8199–8205.
Article
Google Scholar
Lim M.C.H., Ayodo G.A., Morawska L., Ristovski Z.D. and Jayaratne, E.R., 2007. The effects of fuel characteristics and engine operating conditions on the elemental composition of emissions from duty diesel buses. Fuel,
86, 1831–1839.
Article
Google Scholar
Magiera T., Jablonska M., Strzyszcz Z. and Rachwal M., 2011. Morphological and mineralogicalforms of technogenic magnetic particles in industrial dust. Atmos. Environ.,
45, 4281–4290.
Article
Google Scholar
Martuzevicius D., Grinshpun S.A., Lee T., Hu S., Biswas P., Reponene T. and Lemaster G., 2008. Traffic-related PM2.5 aerosol in residential houses located near major highways: indoor versus outdoor concentrations. Atmos. Environ.,
42, 6575–6585.
Article
Google Scholar
Mitchell R., Maher B.A. and Kinnersley R., 2010. Rates of particulate pollution deposition onto leaf surfaces: Temporal and inter-species magnetic analyses. Environ. Pollut.,
158, 1472–1478.
Article
Google Scholar
Monaci F., Moni F., Lanciotti E., Grechi D. and Bargagli R., 2000. Biomonitoring of airborne metals in urban environments: new tracers of vehicle emission, in place of lead. Environ. Pollut.,
107, 321–327.
Article
Google Scholar
Mosleh M, Blau P.J and Dumitrescu D., 2004. Characteristics and morphology of wear particles from laboratory testing of disk brake materials. Wear,
256, 1128–1134.
Article
Google Scholar
Muxworthy A.R., Schmidbauer E. and Petersen N., 2002. Magnetic properties and Mössbauer spectra of urban atmospheric particulate matter: a case study fromMunich. Germany. Geophys. J. Int.,
150, 558–570.
Article
Google Scholar
Parafiniuk J., Bojakowska I. and Malecka K., 2005. Process of auto-purification of Pisia river-bed (Western Mazovia) based on changes of selected heavy metals contents. Przeglad Geologiczny,
53, 609–614 (in Polish).
Google Scholar
Qiao Q., Zhang Ch., Huang B. and Piper J.D.A., 2011. Evaluating the environmental quality impact of the 2008 Beijing Olympic Games: magnetic monitoring of street dust in Beijing Olympic Park. Geophys. J. Int.,
187, 1222–1236.
Article
Google Scholar
Sagnotti L., Macri P., Egli R. and Mondino M., 2006. Magnetic properties of atmospheric particulate matter from automatic air sampler stations in Latinum (Italy): Toward a definition of magnetic fingerprints for natural and anthropogenic PM10 sources. J. Geophys. Res., 111, B12S22.
Article
Google Scholar
Sagnotti L., Taddeucci J., Winkler A. and Cavallo A., 2009. Compositional, morphological, and hysteresis characterization of magnetic airborne particulate matter in Rome, Italy. Geochem. Geophys. Geosyst., 10, Q08Z06.
Article
Google Scholar
Salo H., Bucko M.S., Vaahtovuo E., Limo J., Mäkinen J. and Pesonen L.J., 2012. Biomonitoring of air pollution in SWFinland by magnetic and chemical measurements of moss bags and lichens. J. Geochem. Explor.,
115, 69–81.
Article
Google Scholar
See S.W. and Balasubramanian R., 2006. Physical characteristics of ultrafine particles emitted from different gas cooking methods. Aerosol Air Qual. Res.,
6, 82–92.
Google Scholar
Tauxe L., 2015. Essentials of Paleomagnetism. Third Web Edition (http://earthref.org/MAGIC/books/Tauxe/Essentials/).
Google Scholar
Thorpe A. and Harrison R.M., 2008. Sources and properties of non-exhaust particulate matter from road traffic: a review. Sci. Tot. Environ.,
400, 270–282.
Article
Google Scholar
Tomlinson D.C., Wilson J.G., Harris C.R. and Jeffrey D.W., 1980. Problems in assessment of heavy metals in estuaries and the formation of a pollution index. Helgoländer Meeresunlters,
33, 566–575.
Article
Google Scholar
Wahlin P., Berkowicz R. and Palmgren F., 2006. Characterisation of traffic-generated particulate matter in Copenhagen. Atmos. Environ.,
40, 2151–2159.
Article
Google Scholar
Wan M.P., Wu Ch. L., To G.N.S., Chan T.Ch. and Chao C.Y.H., 2011. Ultrafine particles, and PM2.5 generated from cooking in homes. Atmos. Environ.,
45, 6141–6148.
Article
Google Scholar
Wang G., Oldfield F., Xia D., Chen F., Liu X. and Zhang W., 2012. Magnetic properties and correlation with heavy metals in urban street dust: A case study from the city of Lanzhou, China. Atmos. Environ.,
46, 289–298.
Google Scholar
Zhang C.Q., Appel E. and Huanga B., 2012. Discriminating sources of anthropogenic heavy metals in urban street dusts using magnetic and chemical methods. J. Geochem. Explor., 119-120, 60–75.
Article
Google Scholar
Zhang Q., Gangupomu R.H., Ramirez D. and Zhu Y., 2010. Measurement of ultrafine particles and other air pollutants emitted by cooking activities. Int. J. Environ. Res. Publ. Health,
7, 1744–1759.
Article
Google Scholar
Zheng Y. and Zhang S.H., 2008. Magnetic properties of street dust and topsoil in Beijing and its environmental implications. Chin. Sci. Bull.,
53, 408–417.
Article
Google Scholar
Zhu Z., Han Z., Bi X. and Yang W., 2012. The relationship between magnetic parameters and heavy metal contents of indoor dust in e-waste recycling impacted area, Southeast China. Sci. Tot. Environ.,
433, 302–308.
Article
Google Scholar
Zhu Z., Li Z., Bi X., Han Z. and Yu G., 2013. Response of magnetic properties to heavy metal pollution in dust from three industrial cities in China. J. Hazard. Mater., 246-247, 189–198.
Article
Google Scholar
Yang Q., Chen H. and Li B., 2015. Source identification and health risk assessment of metals in indoor dust in the vicinity of phosphorus mining, Guizhou Province, China. Arch. Environ. Contam. Toxicol.,
68, 20–30.
Article
Google Scholar