Skip to main content

Magnetic particles in indoor dust as marker of pollution emitted by different outside sources

Abstract

The potential relation between outdoor pollutants and the quality of indoor air was evaluated. A case study was carried out in the small town of Zyrardow situated south-west of Warsaw, Poland. The indoor dust from 20 apartments from several parts of the town that are anticipated to be exposed to various levels of pollution was investigated: a mildly polluted area (suburban), a heating plant area, a post-industrial area and the city center. For evaluation of indoor dust several magnetic parameters (mass-specific magnetic susceptibility χ, its temperature dependence, anhysteretic remanent magnetization, hysteresis loop parameters) were applied. Analysis of magnetic properties was supplemented by analysis of chemical elements: Cd, Cu, Co, Cr, Fe, Mn, Ni, Pb and Zn. Depending on the location of apartments, large variations in concentration, mineralogy and grain-size of magnetic particles were detected. The thermomagnetic analysis revealed magnetite as a primary magnetic phase. In indoor dust, the Curie temperature of ~760°C and soft hysteresis loops with relatively low coercivity values of ~1.5-5 mT are an attribute of metallic iron. The dust collected from apartments located near the local heating plant area, in contaminated post-industrial and suburban areas contains mainly magnetite and only a small amount of metallic iron. Mass-specific magnetic susceptibility is in the range from 40 to 200 × 10-8 m3kg-1 and linearly correlates with concentration of individual heavy metals: Ni, Cr, Co and Zn. Magnetic fraction of dust from the city center mainly consists of magnetite and variable amounts of metallic iron. Magnetic susceptibility shows linear correlations with concentration of Fe and concentration of individual heavy metals (Zn, Ni and Co) considered as traffic-related. The study demonstrates that metallic iron present in indoor dust is a potential marker of trafficrelated sources and it makes it possible to use magnetic methods as a tool for evaluation of traffic-related impact on indoor air levels.

This is a preview of subscription content, access via your institution.

References

  • Bućko M.S., Magiera T., Pesonen L.J. and Janus B., 2009. Magnetic, geochemical, and microstructural characteristics of road dust on roadsides with different traffic volumes — case study from Finland. Water Air Soil Pollut., 209, 295–306.

    Article  Google Scholar 

  • Castaneda-Miranda A.G., Böhnel H.N., Molina-Garza R.S. and Chaparro M.A.E. 2014. Magnetic evaluation of TSP-filters for air quality monitoring. Atmos. Environ., 96, 163–174.

    Article  Google Scholar 

  • Chao C.Y.H., 2001. Comparison between indoor and outdoor air contaminant levels in residential buildings from passive sampler study. Build. Environ., 36, 999–1007.

    Article  Google Scholar 

  • Day R., Fuller M. and Schmidt A., 1977. Hysteresis properties of titanomagnetite: Grain size and composition dependence. Phys. Earth Planet. Inter., 13, 260–267.

    Article  Google Scholar 

  • Dennekamp M., Howarth S., Dick C.W., Cherrie J., Donaldson K. and Sea A., 2001. Ultrafine particles and nitrogen oxides generated by gas and electric cooking. Occup. Environ. Med., 58, 511–516.

    Article  Google Scholar 

  • Englert N., 2004. Fine particles and human health — A review of epidemio-logical studies. Toxicol. Lett., 149, 235–242.

    Article  Google Scholar 

  • Evans M.E. and Heller F., 2003. Environmental Magnetism: Principles and Applications of Enviromagnetics. Elsevier Science, Academic Press, San Diego, CA.

    Google Scholar 

  • Fuller C., Davis J., Cain D., Lamothe P., Fries T., Fernandez G., Vargas J. and Murillo M., 1990. Distribution and transport of sediment bound metal contaminants in the Rio Grande de Tracole, Costa Rica (Central America). Water Res., 24, 805–812.

    Article  Google Scholar 

  • Górka-Kostrubiec B., 2015. The magnetic properties of indoor dust fractions as markers of air pollution inside buildings. Build. Environ., 90, 186–195

    Article  Google Scholar 

  • Górka-Kostrubiec B., Jeleńska M. and Król E., 2014. Magnetic signature of indoor air pollution: household dust study. Acta Geophys., 62, 1478–1503.

    Article  Google Scholar 

  • Guo H., Morawska L., He C., Zhang Y., Ayoko G. and Cao M., 2010. Characterization of particle number concentrations and PM2.5 in a school: influence of outdoor air pollution on indoor air. Environ. Sci. Pollut. Res., 17, 1268–1278.

    Article  Google Scholar 

  • Halsall C.J., Maher B.A., Karloukovski V.V., Shah P. and Watkins S.J., 2008. A novel approach to investigating indoor/outdoor pollution links: Combined magnetic and PAH measurements. Atmos. Environ., 42, 8902–8909.

    Article  Google Scholar 

  • He C., Morawska L., Hitchins J. and Gilbert D., 2004. Contribution from indoor sources to particle number and mass concentrations in residential houses. Atmos. Environ., 38, 3405–3415.

    Article  Google Scholar 

  • Hrouda F., 2011. Models of frequency-dependent susceptibility of rocks and soils revisited and broadened. Geophys. J. Int., 187, 1259–1269.

    Article  Google Scholar 

  • Jamriska M., Morawska L. and Clark B.A., 2000. Effect of ventilation and filtration on submicrometer particles in an indoor environment. Indoor Air, 10, 19–26.

    Article  Google Scholar 

  • Jelenska M., Hasso-Agopsowicz A., Kadzialko-Hofmokl M., Kopcewicz B., Sukhorada A., Bondar K. and Matviishina Zh., 2008. Magnetic structure of the polluted soil profiles from eastern Ukraine. Acta Geophys., 56, 1043–1064.

    Article  Google Scholar 

  • Jordanova D., Jordanova N., Lanos Ph., Petrov P. and Tsacheva T., 2012. Magnetism of outdoor and indoor settled dust and its utilization as a tool for revealing the effect of elevated particulate air pollution on cardiovascular mortality. Geochem. Geophys. Geosyst., 13, Q08Z49.

    Article  Google Scholar 

  • Jordanova N., Jordanova D., Henry B., Goff M.L., Dimov D. and Tsacheva T., 2006. Magnetism of cigarette ashes. J. Magn. Magn. Mater., 301, 50–66.

    Article  Google Scholar 

  • Kingham S., Briggs D., Elliott P., Fischer P. and Lebret E., 2000. Spatial variations in the concentrations of traffic-related pollutants in indoor and outdoor air in Huddersfield, England. Atmos. Environ., 34, 905–916.

    Article  Google Scholar 

  • Kulmala M., Asmi A. and Petaja T., 1999. Indoor air aerosol model: the effect of outdoor air, filtration and ventilation on indoor concentrations. Atmos. Environ., 33, 2133–2144.

    Article  Google Scholar 

  • Langer S., Weschler C.J., Fischer A., Beko G., Toftum J. and Clausen G., 2010. Phthalate and PAH concentrations in dust collected from 500 Danish homes and 151 Danish day-care facilities. Atmos. Environ., 44, 2294–2301.

    Article  Google Scholar 

  • Layton D.W. and Beamer P.I., 2009. Migration of contaminated soil and airborne particulates to indoor dust. Environ. Sci. Technol., 43, 8199–8205.

    Article  Google Scholar 

  • Lim M.C.H., Ayodo G.A., Morawska L., Ristovski Z.D. and Jayaratne, E.R., 2007. The effects of fuel characteristics and engine operating conditions on the elemental composition of emissions from duty diesel buses. Fuel, 86, 1831–1839.

    Article  Google Scholar 

  • Magiera T., Jablonska M., Strzyszcz Z. and Rachwal M., 2011. Morphological and mineralogicalforms of technogenic magnetic particles in industrial dust. Atmos. Environ., 45, 4281–4290.

    Article  Google Scholar 

  • Martuzevicius D., Grinshpun S.A., Lee T., Hu S., Biswas P., Reponene T. and Lemaster G., 2008. Traffic-related PM2.5 aerosol in residential houses located near major highways: indoor versus outdoor concentrations. Atmos. Environ., 42, 6575–6585.

    Article  Google Scholar 

  • Mitchell R., Maher B.A. and Kinnersley R., 2010. Rates of particulate pollution deposition onto leaf surfaces: Temporal and inter-species magnetic analyses. Environ. Pollut., 158, 1472–1478.

    Article  Google Scholar 

  • Monaci F., Moni F., Lanciotti E., Grechi D. and Bargagli R., 2000. Biomonitoring of airborne metals in urban environments: new tracers of vehicle emission, in place of lead. Environ. Pollut., 107, 321–327.

    Article  Google Scholar 

  • Mosleh M, Blau P.J and Dumitrescu D., 2004. Characteristics and morphology of wear particles from laboratory testing of disk brake materials. Wear, 256, 1128–1134.

    Article  Google Scholar 

  • Muxworthy A.R., Schmidbauer E. and Petersen N., 2002. Magnetic properties and Mössbauer spectra of urban atmospheric particulate matter: a case study fromMunich. Germany. Geophys. J. Int., 150, 558–570.

    Article  Google Scholar 

  • Parafiniuk J., Bojakowska I. and Malecka K., 2005. Process of auto-purification of Pisia river-bed (Western Mazovia) based on changes of selected heavy metals contents. Przeglad Geologiczny, 53, 609–614 (in Polish).

    Google Scholar 

  • Qiao Q., Zhang Ch., Huang B. and Piper J.D.A., 2011. Evaluating the environmental quality impact of the 2008 Beijing Olympic Games: magnetic monitoring of street dust in Beijing Olympic Park. Geophys. J. Int., 187, 1222–1236.

    Article  Google Scholar 

  • Sagnotti L., Macri P., Egli R. and Mondino M., 2006. Magnetic properties of atmospheric particulate matter from automatic air sampler stations in Latinum (Italy): Toward a definition of magnetic fingerprints for natural and anthropogenic PM10 sources. J. Geophys. Res., 111, B12S22.

    Article  Google Scholar 

  • Sagnotti L., Taddeucci J., Winkler A. and Cavallo A., 2009. Compositional, morphological, and hysteresis characterization of magnetic airborne particulate matter in Rome, Italy. Geochem. Geophys. Geosyst., 10, Q08Z06.

    Article  Google Scholar 

  • Salo H., Bucko M.S., Vaahtovuo E., Limo J., Mäkinen J. and Pesonen L.J., 2012. Biomonitoring of air pollution in SWFinland by magnetic and chemical measurements of moss bags and lichens. J. Geochem. Explor., 115, 69–81.

    Article  Google Scholar 

  • See S.W. and Balasubramanian R., 2006. Physical characteristics of ultrafine particles emitted from different gas cooking methods. Aerosol Air Qual. Res., 6, 82–92.

    Google Scholar 

  • Tauxe L., 2015. Essentials of Paleomagnetism. Third Web Edition (http://earthref.org/MAGIC/books/Tauxe/Essentials/).

    Google Scholar 

  • Thorpe A. and Harrison R.M., 2008. Sources and properties of non-exhaust particulate matter from road traffic: a review. Sci. Tot. Environ., 400, 270–282.

    Article  Google Scholar 

  • Tomlinson D.C., Wilson J.G., Harris C.R. and Jeffrey D.W., 1980. Problems in assessment of heavy metals in estuaries and the formation of a pollution index. Helgoländer Meeresunlters, 33, 566–575.

    Article  Google Scholar 

  • Wahlin P., Berkowicz R. and Palmgren F., 2006. Characterisation of traffic-generated particulate matter in Copenhagen. Atmos. Environ., 40, 2151–2159.

    Article  Google Scholar 

  • Wan M.P., Wu Ch. L., To G.N.S., Chan T.Ch. and Chao C.Y.H., 2011. Ultrafine particles, and PM2.5 generated from cooking in homes. Atmos. Environ., 45, 6141–6148.

    Article  Google Scholar 

  • Wang G., Oldfield F., Xia D., Chen F., Liu X. and Zhang W., 2012. Magnetic properties and correlation with heavy metals in urban street dust: A case study from the city of Lanzhou, China. Atmos. Environ., 46, 289–298.

    Google Scholar 

  • Zhang C.Q., Appel E. and Huanga B., 2012. Discriminating sources of anthropogenic heavy metals in urban street dusts using magnetic and chemical methods. J. Geochem. Explor., 119-120, 60–75.

    Article  Google Scholar 

  • Zhang Q., Gangupomu R.H., Ramirez D. and Zhu Y., 2010. Measurement of ultrafine particles and other air pollutants emitted by cooking activities. Int. J. Environ. Res. Publ. Health, 7, 1744–1759.

    Article  Google Scholar 

  • Zheng Y. and Zhang S.H., 2008. Magnetic properties of street dust and topsoil in Beijing and its environmental implications. Chin. Sci. Bull., 53, 408–417.

    Article  Google Scholar 

  • Zhu Z., Han Z., Bi X. and Yang W., 2012. The relationship between magnetic parameters and heavy metal contents of indoor dust in e-waste recycling impacted area, Southeast China. Sci. Tot. Environ., 433, 302–308.

    Article  Google Scholar 

  • Zhu Z., Li Z., Bi X., Han Z. and Yu G., 2013. Response of magnetic properties to heavy metal pollution in dust from three industrial cities in China. J. Hazard. Mater., 246-247, 189–198.

    Article  Google Scholar 

  • Yang Q., Chen H. and Li B., 2015. Source identification and health risk assessment of metals in indoor dust in the vicinity of phosphorus mining, Guizhou Province, China. Arch. Environ. Contam. Toxicol., 68, 20–30.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iga Szczepaniak-Wnuk.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Szczepaniak-Wnuk, I., Górka-Kostrubiec, B. Magnetic particles in indoor dust as marker of pollution emitted by different outside sources. Stud Geophys Geod 60, 297–315 (2016). https://doi.org/10.1007/s11200-015-1238-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-015-1238-6

Keywords

  • indoor dust
  • indoor air pollution
  • magnetic susceptibility
  • metallic iron
  • heavy metals