Studia Geophysica et Geodaetica

, Volume 60, Issue 3, pp 547–564 | Cite as

Attenuation from microseismic datasets by the peak frequency method benchmarked with the spectral ratio method

  • Miłosz Wcisło
  • Leo Eisner


Recently proposed peak-frequency method is used to estimate the P- and S-wave quality factors from microseismic events. We use a downhole monitoring dataset of 10 high signal-to-noise ratio microseismic events to calculate P- and S-wave effective attenuation of a carbonate reservoir. We benchmark these results with the spectral ratio method and obtain mutually consistent results. Additionally we develop and test two techniques of peak frequency determination. We show that the peak frequency method can be successfully used in the estimation of the quality factor and it provides precise measurements of attenuation.


attenuation microseismicity inversion ray tracing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aki K. and Chouet., 1975. Origin of coda waves: Source, attenuation, and scattering effects. J. Geophys. Res., 80, 3322–3342, DOI: 10.1029/JB080i023p03322.CrossRefGoogle Scholar
  2. Aki K., Fehler M., Aamodt R.L., Albright R.L., Potter R.M., Pearson C.M. and Tester J.W., 1982. Interpretation of seismic data from hydraulic fracturing experiments at the Fenton Hill, New Mexico, hot dry rock geothermal site. J. Geophys. Res., 87, 936–944, DOI: 10.1029/JB087iB02p00936.CrossRefGoogle Scholar
  3. Assefa S., McCann C. and Sothcott J., 1999. Attenuation of P- and S-waves in limestones. Geophys. Prospect., 47, 359–392, DOI: 10.1046/j.1365-2478.1999.00136.x.CrossRefGoogle Scholar
  4. Bachura M. and Fischer T., 2015. Coda attenuation analysis in the West Bohemia/Vogtland earthquake swarm area. Pure Appl. Geophys., 173, 425–437, DOI: 10.1007/s00024-015-1137-3.CrossRefGoogle Scholar
  5. Baig A. and Urbancic T., 2010. Microseismic moment tensors A path to understanding frac growth. The Leading Edge, 29, 320–324, DOI: 10.1190/1.3353729.CrossRefGoogle Scholar
  6. Bath M., 1974. Spectral Analysis in Geophysics. Developments in Solid Earth Geophysics 7, Elsevier Science Publishing Co., Amsterdam, The Netherlands.Google Scholar
  7. Červený V., 2001. Seismic Ray Theory. Cambridge University Press, Cambridge, U.K.CrossRefGoogle Scholar
  8. Cheng H.X. and Kennett B.L.N., 2002. Frequency dependence of seismic wave attenuation in the upper mantle beneath the Australian region. Geophys. J. Int., 150, 45–57, DOI: 10.1046/j.1365-246X.2002.01677.x.CrossRefGoogle Scholar
  9. Duncan P. and Eisner L., 2010. Reservoir characterization using surface microseismic monitoring. Geophysics, 75, 139–146, DOI: 10.1190/1.3467760.CrossRefGoogle Scholar
  10. Eaton D.W., 2014. Magnitude, scaling, and spectral signature of tensile microseisms. GeoConvention Conference Abstracts. ( Scholar
  11. Einspigel D. and Eisner L., 2014. Detection of perforation shots in surface monitoring: the attenuation effect. Acta Geodyn. Geomater., 11, 159–164 DOI: 10.13168/AGG.2013.0062.Google Scholar
  12. Eisner L., Gei D., Hallo M., Opršal I. and Ali M.Y., 2013. The peak frequency of direct waves for microseismic events. Geophysics, 78, A45–A49, DOI: 10.1190/geo2013-0197.1.CrossRefGoogle Scholar
  13. Eisner L., Gei D., Hallo M., Opršal I. and Ali M.Y., 2014. Reply to “The peak frequency of direct waves for microseismic events” (Leo Eisner, Davide Gei, Miroslav Hallo, Ivo Opršal, and Mohammed Y. Ali, GEOPHYSICS, 78, no. 6, A45–A49). Geophysics, 79, X23–X25, DOI: 10.1190/2014-0053.2.CrossRefGoogle Scholar
  14. Gladwin M.T. and Stacey F.D., 1974. Anelastic degradation of acoustic pulses in rock. Phys. Earth Planet. Inter., 8, 332–336, DOI: 10.1016/0031-9201(74)90041-7.CrossRefGoogle Scholar
  15. Klimentos T., 1995. Attenuation of P- and S-waves as a method of distinguishing gas condensate from oil and water. Geophysics, 60, 447–458, DOI: 10.1190/1.1443782.CrossRefGoogle Scholar
  16. Kwiatek G., Plenkers K. and Dresen G., 2011. Source parameters of picoseismicity recorded at Mponeng Deep Gold Mine, South Africa: Implications for Scaling Relations. Bull. Seismol. Soc. Amer., 101, 2592–2608, DOI: 10.1785/0120110094.CrossRefGoogle Scholar
  17. Mateeva A., 2003. Quantifying the Uncertainties in Absorption Estimates from VSP Spectral Ratio. Research Report 457. Center for Wave Phenomena, Colorado School of Mines, Golden, CO ( Scholar
  18. Matheney P. and Nowack R.L., 1995. Seismic attenuation values obtained from instantaneousfrequency matching and spectral ratio. Geophys. J. Int., 123, 1–15, DOI: 10.1111/j.1365-246X.1995.tb06658.xCrossRefGoogle Scholar
  19. Maxwell S.C., Rutledge J., Jones R. and Fehler M., 2010. Petroleum reservoir characterization using downhole microseismic monitoring. Geophysics, 75, 129–137 DOI: 10.1190/1.3477966.CrossRefGoogle Scholar
  20. Morozov I.B., 2014. Source reverberations, near-surface resonances, or Q? Comment on “The peak frequency of direct waves for microseismic events” (Leo Eisner, Davide Gei, Miroslav Hallo, Ivo Opršal, and Mohammed Y. Ali, Geophysics, 78, no. 6, A45-A49). Geophysics, 79, X19–X22, DOI: 10.1190/geo2014-0053.1.CrossRefGoogle Scholar
  21. Nelder J.A. and Mead R., 1965. A Simplex method for function minimization. Comput. J., 7, 308–313, DOI: 10.1093/comjnl/7.4.308.CrossRefGoogle Scholar
  22. Ricker N., 1953. The form and laws of propagation of seismic wavelets. Geophysics, 18, 10–40.CrossRefGoogle Scholar
  23. Rutledge J.T. and Phillips W.S., 2003. Hydraulic stimulation of natural fractures as revealed by induced microearthquakes, Carthage Cotton Valley gas field, east Texas. Geophysics, 68, 441–452, DOI: 10.1190/1.1567214.CrossRefGoogle Scholar
  24. Shekar B. and Tsvankin I., 2012. Anisotropic attenuation analysis of crosshole data generated during hydraulic fracturing. The Leading Edge, 31, 599–593, DOI: 10.1190/tle31050588.1.CrossRefGoogle Scholar
  25. Tomic J., Abercrombie R.E. and Nasciemento A.F., 2009. Source parameters and rupture velocity of small M × 2.1 reservoir induced earthquakes. Geophys. J. Int., 179, 1013–1023, DOI: 10.1111/j.1365-246X.2009.04233.x.CrossRefGoogle Scholar
  26. Tonn R., 1989. Comparison of seven methods for the computation of Q. Phys. Earth Planet. Inter., 55, 259–268, DOI: 10.1016/0031-9201(89)90074-5CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2016

Authors and Affiliations

  1. 1.Institute of Rock Structure and MechanicsThe Czech Academy of SciencesPraha 8Czech Republic
  2. 2.Department of Geology, Geophysics and Enviromental ProtectionAGH University of Science and TechnologyKrakówPoland
  3. 3.Seismik s.r.o.Praha 8Czech Republic

Personalised recommendations