Seasonal and diurnal variability of pressure fluctuation in the infrasound frequency range observed in the Czech microbarograph network

Abstract

Infrasound environments in the Czech microbarograph network were studied. Reference Fourier amplitude spectra were calculated from data measured at three microbarograph sites of the network in May 2011-April 2012; directional analysis of infrasound arrivals in the frequency band 0.15-0.4 Hz was performed for the microbarograph array at Panská Ves in May 2014-April 2015. Diurnal, seasonal and site-to-site variability of the reference spectra was evaluated. Site-to-site variability is influenced by the location of the respective sensors in the open air and inside the observatory buildings and by local noise phenomena like wind turbines. Diurnal variability is well developed in summer with maximum ambient noise levels during the daytime and minima at night. Seasonal variability is observed at night with maxima in winter and minima in summer. Wind and wind eddies seem to be an important source of ambient noise in measurements in the Czech microbarograph network. A distinct spectral peak occurs near 0.2 Hz with amplitudes by about one order of magnitude higher in winter than in summer. Its seasonal variability is related to seasonal propagation of microbaroms from the source region in the Northern Atlantic.

This is a preview of subscription content, access via your institution.

References

  1. Assink J.D., Waxler R., Smets P. and Evers L.G., 2014. Bidirectional infrasonic ducts associated with sudden stratospheric warming events. J. Geophys. Res., 119, 1040–1153, DOI: 10.1002/2013JD021062.

    Google Scholar 

  2. Bowman J.R., Baker G.E. and Bahavar M., 2005. Ambient infrasound noise. Geophys. Res. Lett., 32, L09803, DOI: 10.1029/2005GL022486.

    Article  Google Scholar 

  3. Brázdil R, Štekl J., Budíková M., Dobrovolný P., Fišák J., Kolár M., Prošek P., Sokol Z., Štepánek P., Štepánková P. and Zacharov P., 1999. Klimatické pomery Milešovky (Climate on Milešovka). 1st Edition. Academia, Prague, Czech Republic (in Czech).

    Google Scholar 

  4. Campus P. and Christie D.R., 2010. Worldwide Observations of Infrasonic Waves. In: Le Pichon A., Blanc E. and Hauchecorne A. (Eds), Infrasound Monitoring for Atmospheric Studies. Springer-Verlag, Berlin, Germany, 185–234.

    Chapter  Google Scholar 

  5. Cansi Y., 1995. An automatic seismic event processing for detection and location: The P.M.C.C. method. Geophys. Res. Lett., 22, 1021–1024, DOI: 10.1029/95GL00468.

    Article  Google Scholar 

  6. Christie D.R. and Campus P., 2010. The IMS Infrasound Network: Design and Establishment of Infrasound Stations. In: Le Pichon A., Blanc E. and Hauchecorne A. (Eds), Infrasound Monitoring for Atmospheric Studies. Springer-Verlag, Berlin, Germany, 29–75.

    Chapter  Google Scholar 

  7. Donn W.L. and Rind D., 1971. Natural infrasound as an atmospheric probe. Geophys. J. R. Astr. Soc., 26, 111–133.

    Article  Google Scholar 

  8. Evers L.G. and Haak H.W., 2010. The Characteristics of Infrasound, its Propagation and Some Early History. In: Le Pichon A., Blanc E. and Hauchecorne A. (Eds), Infrasound Monitoring for Atmospheric Studies. Springer-Verlag, Berlin, Germany, 3–27.

    Chapter  Google Scholar 

  9. Evers L.G. and Siegmund P., 2009. Infrasonic signature of the 2009 major sudden stratospheric warming. Geophys. Res. Let., 36, L23808, DOI: 10.1029/2009GL041323.

    Article  Google Scholar 

  10. Evers L.G., van Geyt A.R.J., Smets P. and Fricke J.T., 2012. Anomalous infrasound propagation in a hot stratosphere and the existence of extremely small shadow zones. J. Geophys. Res., 117, D06120, DOI: 10.1029/2011JD017014.

    Article  Google Scholar 

  11. Garces M., Willis M., Hetzer C., Le Pichon A. and Drob D., 2004. On using ocean swells for continuous infrasonic measurements of winds and temperature in the lower, middle, and upper atmosphere. Geophys. Res. Lett., 31, L19304, DOI: 10.1029/2004GL020696.

    Article  Google Scholar 

  12. Garces M., Willis M. and Le Pichon A., 2010. Infrasonic observations of open ocean swells in the Pacific: Deciphering the song of the sea. In: Le Pichon A., Blanc E. and Hauchecorne A. (Eds.), Infrasound Monitoring for Atmospheric Studies. Springer-Verlag, Berlin, Germany, 29–75.

    Google Scholar 

  13. Green D.N. and Bowers D., 2010. Estimating the detection capability of the International Monitoring System infrasound network. J. Geophys. Res., 115, D18116, DOI: 10.1029/2010JD014017.

    Article  Google Scholar 

  14. Landes M., Ceranna L., Le Pichon A. and Matoza R.S., 2012. Localization of microbarom sources using the IMS infrasound network. J. Geophys. Res., 117, D06102, DOI: 10.1029/2011JD016684.

    Article  Google Scholar 

  15. Landes M., Shapiro N., Le Pichon A., Hillers G. and Campillo M., 2014. Explaining global patterns of microbarom observations with wave action models. Geophys. J. Int., 199, 1328–1337, DOI: 10.1093/gji/ggu324.

    Article  Google Scholar 

  16. Laštovicka J., 1974. Relationship between microseisms, geomagnetic activity and ionospheric absorption of radio waves. Stud. Geophys. Geod., 18, 307–309.

    Article  Google Scholar 

  17. Le Pichon A. and Cansi Y., 2003. PMCC for infrasound data processing. InfraMatics, 2, 1–9.

    Google Scholar 

  18. Le Pichon A., Ceranna L., Garces M., Drob D. and Millet C., 2006. On using infrasound from interacting ocean swells for global continuous measurements of winds and temperature in the stratosphere. J. Geophys. Res., 111, D11106, DOI: 10.1029/2005JD006690.

    Article  Google Scholar 

  19. Le Pichon A., Vergoz J., Herry P. and Ceranna L., 2008. Analysing the detection capability of infrasound arrays in Central Europe. J. Geophys. Res., 113, D12115, DOI: 10.1029/2007JD009509.

    Article  Google Scholar 

  20. Le Pichon A., Vergoz J., Blanc E., Guilbert J., Ceranna L., Evers L. and Brachet N., 2009. Assessing the performance of the International Monitoring System’s Infrasound network: Geographical coverage and temporal variabilities. J. Geophys. Res., 114, D08112, DOI: 10.1029/2008JD010907.

    Article  Google Scholar 

  21. Matoza R.S., Landes M., Le Pichon A., Ceranna L. and Brown, D., 2013. Coherent ambient infrasound recorded by the International Monitoring System. Geophys. Res. Lett., 40, 429–433, DOI: 10.1029/2012GL54329.

    Article  Google Scholar 

  22. Nový R., 2009. Hluk a Chvení (Noise and Vibrations). 3rd Edition. Ceské vysoké ucení technické v Praze (Czech Technical University in Prague), Prague, Czech Republic (in Czech).

    Google Scholar 

  23. Pilger C., Ceranna L., Ross J.O, Le Pichon A., Mialle P. and Garces M.A., 2015. CTBT infrasound network performance to detect the 2013 Russian fireball event. Geophys. Res. Lett., 42, 2523–2531, DOI: 10.102/2015GL063482.

    Article  Google Scholar 

  24. Smets P.S.M. and Evers L.G., 2014. The life cycle of a sudden stratospheric warming from infrasonic ambient noise observations. J. Geophys. Res., 119, 12084–12099, DOI: 10.1002/2014JD021905.

    Google Scholar 

  25. Whitaker R.W. and Mutschlecner J.P, 2008. A comparison of infrasound signals refracted from stratospheric and thermospheric altitudes. J. Geophys. Res., 113. D08117, DOI: 10.1029/2007JD008852.

    Article  Google Scholar 

  26. Zátopek A., 1963. Über einige Ergebnisse der statistischen Periodenerforschung von europäischen Mikroseismen. Stud. Geophys. Geod., 7, 164–182 (in German).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tereza Šindelárová.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Šindelárová, T., Kozubek, M., Chum, J. et al. Seasonal and diurnal variability of pressure fluctuation in the infrasound frequency range observed in the Czech microbarograph network. Stud Geophys Geod 60, 747–762 (2016). https://doi.org/10.1007/s11200-015-0250-1

Download citation

Keywords

  • infrasound environments
  • Czech microbarograph network
  • seasonal and diurnal variability