Advertisement

Studia Geophysica et Geodaetica

, Volume 59, Issue 2, pp 212–252 | Cite as

Lithospheric density structure study by isostatic modelling of the European geoid

  • Lech Krysiński
  • Stanisław Wybraniec
  • Marek Grad
Article

Abstract

We deal with modelling of the geoid undulations for the European Plate by use of topographic and Moho data. Two models assuming linear density stratification in the lithosphere (constant contrast model CCM, constant gradient model CGM) and isostatic balance of the lithosphere were used for calculating the undulation in the flat layer approximation. The results show that the constant contrast model is able to describe the entire oceanic lithosphere, as it indicates the amplitude of thermal density change is in good agreement with the cooling plate model estimation. The constant gradient model gives reliable estimations of the lithosphere properties only in smaller regions of relatively uniform conditions like the Interior of the East European Craton. For continental and oceanic regions the resulting values of the density gradient have some average meaning and they are in interpretable correspondence with characteristic mantle heat flow. In the entire area, both models show strong confusion giving not intermediate and unrealistic lithosphere characterization, which is a result of essential differences of thermal constitution, differences in average crustal density and mineral differences of the lower lithosphere, occurring between the two major tectonic provinces (oceanic and continental). The convention of equivalent linear reduction was discussed extensively and applied as an adequate method of lithosphere thickness estimation. This approach leads to thickness determination similar to other methods (seismic, petrological and thermal). The two concepts allow for the construction of LAB (transitional zone between the lithosphere and asthenosphere) depth maps from topographic and Moho data.

Keywords

geoid modelling isostasy lithospheric density structure Moho European Plate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angevine C.L. and Turcotte D.L., 1980. On the compensation mechanism of the Walvis Ridge. Geophys. Res. Lett., 7, 477–479.CrossRefGoogle Scholar
  2. Artemiev M.E., Babaeva T.M., Mikhailo V.O. and Voydetsky I.E., 1984. Identification of mantle and lithospheric components of the gravity field by isostatic gravity anomalies. Mar. Geophys. Res., 7, 129–148.CrossRefGoogle Scholar
  3. Artemieva I.M., 2011. The lithosphere: An interdisciplinary approach. Cambridge University Press, Cambridge U.K.CrossRefGoogle Scholar
  4. Artemieva I.M. and Mooney W.D., 2001. Thermal thickness and evolution of Precambrian lithosphere: A global study. J. Geophys. Res., 106(B), 16387–16414.CrossRefGoogle Scholar
  5. Barrell J., 1914a. The strength of the Earth’s crust. Part IV. Heterogeneity and rigidity of the crust as measured from isostasy. J. Geol., 22(4), 289–314, DOI:  10.1086/622155.CrossRefGoogle Scholar
  6. Barrell J., 1914b. The strength of the Earth’s crust. Part V. The depth of masses producing gravity anomalies and deflection residuals J. Geol., 22(5), 441–468, DOI:  10.1086/622163.CrossRefGoogle Scholar
  7. Barrell J., 1914c. The strength of the Earth’s crust. Part V. The depth of masses producing gravity anomalies and deflection residuals. J. Geol., 22(6), 537–555, DOI:  10.1086/622170.CrossRefGoogle Scholar
  8. Barrell J., 1914d. The strength of the Earth’s crust. Part VI. Relations of isostatic movements to a sphere of weakness — the asthenosphere. J. Geol., 22(7), 655–683, DOI:  10.1086/622181.CrossRefGoogle Scholar
  9. Becker J.J., Sandwell D.T., Smith W.H.F., Braud J., Binder B., Depner J., Fabre D., Factor J., Ingalls S., Kim S-H., Ladner R., Marks K., Nelson S., Pharaoh A., Sharman G., Trimmer R., von Rosenbürg J., Wallace G. and Wetherall P., 2009. Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_plus. Mar. Geodesy, 32, 355–371 (http://topex.ucsd.edu/sandwell/publications/124_MG_Becker.pdf).CrossRefGoogle Scholar
  10. Braitenberg C. and Ebbing J., 2009. The GRACE-satellite gravity and geoid fields in analysing large-scale, cratonic or intracratonic basins. Geophys. Prospect., 57, 559–571, DOI:  10.1111/j.1365-2478.2009.00793.x.CrossRefGoogle Scholar
  11. Carlson R.L., Snow K.R. and Wilkens R.H., 1988. Density of old oceanic crust: an estimate derived from downhole logging on ODP Leg 102. In: Mazullo E.K. (Ed.), Proceedings of the Ocean Drilling Program, Scientific Results, 102. Ocean Drilling Program, College Station, TX, 63–68. DOI:  10.2973/odp.proc.sr.102.124.1988.Google Scholar
  12. Carlson R.L. and Herrick C.N., 1990. Densities and porosities in the oceanic crust and their variations with depth and age. J. Geophys. Res., 95(B6), 9153–9170.CrossRefGoogle Scholar
  13. Cazenave A., Lago B. and Dominh K., 1983. Thermal Parameters of the Oceanic Lithosphere Estimated from Geoid Height Data. J. Geophys. Res., 88(B2), 1105–1118.CrossRefGoogle Scholar
  14. Crough S.T., 1982. Geoid height anomalies over the Cape Verde Rise. Mar. Geophys. Res., 5, 263–271.CrossRefGoogle Scholar
  15. Dawson J.B., 2008. The Gregory Rift Valley and Neogene-Recent Volcanoes of Northern Tanzania. Geol. Soc. Memoir 33. The Geological Society, London U.K.Google Scholar
  16. Denis C., 1989. The hydrostatic figure of the Earth. In: Teisseyre R. (Ed.), Gravity and Low Frequency Geodynamics. Physics and Evolution of the Earth’s Interior, Vol. 4. PWN-Polish Scientific Publishers, Warszawa, Poland and Elsevier, Amsterdam, The Netherlands.Google Scholar
  17. Dérerová J., Zeyen H., Bielik M. and Salman K., 2006. Application of integrated geophysical modeling for determination of the continental lithospheric thermal structure in the eastern Carpathians. Tectonics, 25, TC3009.Google Scholar
  18. Fullea J., Fernàndez M., Zeyen H. and Vergés J., 2007. A rapid method to map the crustal and lithospheric thickness using elevation, geoid anomaly and thermal analysis. Application to the Gibraltar Arc System and adjacent zones. Tectonophysics, 430, 97–117, DOI:  10.1016/j.lithos.2010.03.003.CrossRefGoogle Scholar
  19. Geissler W.H., Kind R. and Yuan X., 2008. Upper mantle and lithospheric heterogeneities in central and eastern Europe as observed by teleseismic receiver functions. Geophys. J. Int., 174, 351–376, DOI:  10.1111/j.1365-246X.2008.03767.x.CrossRefGoogle Scholar
  20. Grad M., Tiira T. and ESC Working Group, 2009. The Moho depth map of the European Plate. Geophys. J. Int., 176, 279–292, DOI:  10.1111/j.1365-246X.2008.03919.x.CrossRefGoogle Scholar
  21. Gribble R.F., Stern R.J., Newman S., Bloomer Sh.H. and O’Hearn T., 1998. Chemical and Isotopic Composition of Lavas from the Northern Mariana Trough: Implications for Magma genesis in Back-arc Basins. J. Petrol., 39, 125–154.CrossRefGoogle Scholar
  22. Gudfinnsson G.H. and Presnall D.C., 2000. Melting behaviour of model lherzolite in the system CaO-MgO-Al2O3-SiO2-FeO at 0.7–2.8 GPa. J. Petrol., 41, 1241–1269.CrossRefGoogle Scholar
  23. Heestand R.L. and Crough S.T., 1981. The effect of hot spots on the oceanic age-depth relation. J. Geophys. Res., 86(B7), 6107–6114.CrossRefGoogle Scholar
  24. Hirschmann M.M., 2000. Mantle solidus: Experimental constraints and the effects of peridotite composition. Geochem. Geophys. Geosyst., 1, DOI:  10.1029/2000GC000070.
  25. Horváth F., 1993. Towards a mechanical model for the formation of the Pannonian basin. Tectonophysics, 226, 333–357.CrossRefGoogle Scholar
  26. Jaupart C. and Mareschal J.-C., 2014. Constraints on Crustal Heat Production from Heat Flow Data. In: Holland H.D. and Turekian K.K. (Eds), Treatise on Geochemistry. Second Edition. Elsevier, Oxford U.K., 53–73, ISBN: 9780080983004.CrossRefGoogle Scholar
  27. Jokinen J. and Kukkonen I.T., 2000. Inverse Monte Carlo simulation of the lithospheric thermal regime in the Fennoscandian Shield using xenolith-derived mantle temperatures. J. Geodyn., 29, 71–85, DOI:  10.1016/S0264-3707(99)00011-3.CrossRefGoogle Scholar
  28. Kozlovskaya E., Kosarev G., Aleshin I., Riznichenko O. and Sanina I. 2008. Structure and composition of the crust and upper mantle of the Archean-Proterozoic boundary in the Fennoscandian shield obtained by joint inversion of receiver function and surface wave phase velocity of recording of the SVEKALAPKO array. Geophys. J. Int., 175, 135–152, DOI:  10.1111/j.1365-246X.2008.03876.x.CrossRefGoogle Scholar
  29. Krysinski L., 1992. On the mathematical connections of planetary rotational deformations with Love’s tidal problem. Phys. Earth Planet. Inter., 72(3-4), 137–152, DOI:  10.1016/0031-9201(92)90198-5.CrossRefGoogle Scholar
  30. Krysinski L., 2009. Systematic methodology for velocity-dependent gravity modelling of density crustal cross-sections, using an optimization procedure. Pure Appl. Geophys., 166, 375–408, DOI:  10.1007/s00024-009-0445-x.CrossRefGoogle Scholar
  31. Krysinski L., Grad M. and POLONAISE’97 Working Group, 2000. POLONAISE’97 — seismic and gravimetric modelling of the crustal structure in the Polish Basin. Phys. Chem. Earth A, 25, 355–363.CrossRefGoogle Scholar
  32. Krysinski L., Grad M. and Wybraniec S., 2009. Searching for regional crustal velocity-density relations with the use of 2-D gravity modelling — Central Europe case. Pure Appl. Geophys., 166, 1913–1936, DOI:  10.1007/s00024-009-0526-x.CrossRefGoogle Scholar
  33. Kuo B-Y. and Forsyth D.W., 1988. Gravity anomalies of the ridge-transform system in the South Atlantic between 31 and 34.5°S: upwelling centers and variations in crustal thickness. Mar. Geophys. Res., 10, 205–232.CrossRefGoogle Scholar
  34. Lachenbruch A.H. and Morgan P., 1990. Continental extension, magmatism and elevation; formal relations and rules of thumb. Tectonophysics, 174, 39–62.CrossRefGoogle Scholar
  35. Levander A., Lenardic A. and Karlstrom K.E., 2006. Structure of the continental lithosphere. In: Brown M. and Rushamer T. (Eds), Evolution and Differentiation of the Continental Crust. Cambridge University Press, Cambridge U.K., 21–66.Google Scholar
  36. Majdanski M., Kozlovskaya E., Swieczak M. and Grad M., 2009. Interpretation of geoid anomalies in the contact zone between the East European Craton and the Palaeozoic Platform-I. Estimation of effects of density inhomogeneities in the crust on geoid undulations. Geophys. J. Int., 177, 321–333, DOI:  10.1111/j.1365-246X.2008.03954.x.CrossRefGoogle Scholar
  37. Martinec Z., 1994. The minimum depth of compensation to topographic masses. Geophys. J. Int., 117, 545–554.CrossRefGoogle Scholar
  38. Parsons B. and Sclater J.G., 1977. An analysis of the variation of ocean floor bathymetry and heat flow with age. J. Geophys. Res., 82(B5), 802–827.Google Scholar
  39. Pasyanos M.E., 2010. Lithospheric thickness modeled from long-period surface wave dispersion. Tectonophysics, 481, 38–50.CrossRefGoogle Scholar
  40. Pavlis N.K., Holmes S.A., Kenyon S.C. and Factor J.K., 2008. An Earth Gravitational Model to degree 2160: EGM2008. Geophys. Res. Abs., 10, EGU2008-A-01891 (full version available at http://massentransporte.de/fileadmin/2kolloquium_muc/2008-10-08/Bosch/EGM2008.pdf).Google Scholar
  41. Pollack H.N. and Chapman D.S., 1977. Mantle heat flow. Earth Planet. Sci. Lett., 34, 174–184.CrossRefGoogle Scholar
  42. Puziewicz J., Czechowski L., Krysinski L., Majorowicz J., Matusiak-Malek M. and Wróblewska M., 2012. Lithosphere thermal structure at the eastern margin of the Bohemian Massif: a case petrological and geophysical study of the Niedzwiedz amphibolite massif (SW Poland). Int. J. Earth Sci., 101, 1211–1228, DOI:  10.1007/s00531-011-0714-7.CrossRefGoogle Scholar
  43. Robert S.D., Needham H.D. and Renard V., 1995. Gravity anomalies and crustal thickness variations along the Mid-Atlantic Ridge between 33°N and 40°N. J. Geophys. Res., 100(B3), 3767–3787.CrossRefGoogle Scholar
  44. Sandwell D. and Schubert G., 1980. Geoid height versus age for symmetric spreading ridges. J. Geophys. Res., 85(B12), 7235–7241.CrossRefGoogle Scholar
  45. Schroeder W., 1984. The empirical age-depth relation and depth anomalies in the Pacific ocean basin. J. Geophys. Res., 89(B12), 9873–9883.CrossRefGoogle Scholar
  46. Schubert G., Froidevaux C. and Yuen D.A., 1976. Oceanic lithosphere and asthenosphere: thermal and mechanical structure. J. Geophys. Res., 81, 3525–3540.CrossRefGoogle Scholar
  47. Sclater J.G., Jaupart C. and Galson D., 1980. The heat flow through oceanic and continental crust and the heat loss of the Earth. Rev. Geophys., 18, 269–311.CrossRefGoogle Scholar
  48. Stacey F.D., 1992. Physics of the Earth. Problem Solutions. 3rd Edition. Brookfield Press, Kenmore, Qld.Google Scholar
  49. Stacey F.D. and Davis P.M., 2008. Physics of the Earth. Fourth Edition. Cambridge University Press, Cambridge U.K.CrossRefGoogle Scholar
  50. Stevenson J.M. and Hildebrand J.A., 1996. Gravity modeling of a volcanically active site on the East Pacific Rise axis. Tectonophysics, 254, 57–68.CrossRefGoogle Scholar
  51. Swieczak M., Kozlovskaya E., Majdanski M. and Grad M., 2009. Interpretation of geoid anomalies in the contact zone between the East European Craton and the Palaeozoic Platform-II: Modelling of density in the lithospheric mantle. Geophys. J. Int., 177, 334–346, DOI:  10.1111/j.1365-246X.2009.04103.x.CrossRefGoogle Scholar
  52. Takahashi E. and Kushiro I., 1983. Melting of dry peridotite at high pressures and basalt magma genesis. Am. Miner., 68, 859–879.Google Scholar
  53. Tari G., Dövényi P., Dunkl I., Horváth F., Lenkey L., Stefanescu M., Szafián P. and Tóth T., 1999. Lithospheric structure of the Pannonian basin derived from seismic, gravity and geothermal data. Geol. Soc. Spec. Publ., 156, 215–250.CrossRefGoogle Scholar
  54. Turcotte D.L. and Harris R.A., 1984. Relationship between the oceanic geoid and the structure of the oceanic lithosphere. Mar. Geophys. Res., 7, 177–190.CrossRefGoogle Scholar
  55. Turcotte D.L. and McAdoo D.C., 1979. Geoid anomalies and the thickness of the lithosphere. J. Geophys. Res., 84(B5), 2381–2387.CrossRefGoogle Scholar
  56. White R.S., McKenzie D. and O’Nions R.K., 1992. Oceanic crustal thickness from seismic measurements and rare earth element inversions. J. Geophys. Res., 97(B13), 19683–19715.CrossRefGoogle Scholar
  57. Zeyen H., Ayarza P., Fernàndez M. and Rimi A., 2005. Lithospheric structure under the western African-European plate boundary: A transect across the Atlas Mountains and the Gulf of Cadiz. Tectonics, 24, 1–16, DOI:  10.1029/2004TC001639.CrossRefGoogle Scholar
  58. Zeyen H., Dérerová J. and Bielik M., 2002. Determination of the continental lithospheric thermal structure in the Western Carpathians: Integrated modelling of surface heat flow, gravity anomalies and topography. Phys. Earth Planet. Inter., 134(1–2), 89–104.CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2015

Authors and Affiliations

  • Lech Krysiński
    • 1
    • 2
  • Stanisław Wybraniec
    • 2
  • Marek Grad
    • 2
  1. 1.Road and Bridge Research InstituteWarsawPoland
  2. 2.Institute of Geophysics, Faculty of PhysicsUniversity of WarsawWarsawPoland

Personalised recommendations