Studia Geophysica et Geodaetica

, Volume 58, Issue 3, pp 461–472 | Cite as

Geomagnetic activity and the North Atlantic Oscillation

  • Václav BuchaEmail author


The North Atlantic Oscillation (NAO) is the prominent pattern of winter climate variability that has a strong effect on weather in the North Atlantic region and the adjacent continents. At present, uncertainty prevails as to the mechanisms controlling the variability of the NAO. It is also difficult to explain why the positive phase of the NAO has prevailed over the past 37 years (1972–2008). We found high positive correlation coefficients between geomagnetic activity (used as a measure of solar wind intensity) and the NAO indices that equal 0.76 for 1962–1994 and 0.63 for 1961–2011. Positive correlations of the distribution of surface air temperature with the NAO and similarly with geomagnetic activity occur in the Northern Hemisphere. These results encourage our search for possible causes controlling the NAO. We have found that at times of high geomagnetic activity the NAO index is positive and magnetic reconnection may enable the solar wind to initiate downward winds in the magnetosphere. Wind anomalies originate at the edge of the stratospheric polar vortex and propagate downward through the troposphere taking part in the intensification of the vortex and of the westerlies. Stronger northerly winds over Greenland carry cold air southward and, together with the enhanced westerlies, advect the warm air from the Atlantic along the deep Icelandic low into Eurasia increasing temperatures there. On the other hand, at times of low geomagnetic activity, the NAO index is negative and the stratospheric polar vortex is weak. Warm air from the subtropics is carried into the Arctic and a rapid amplification of planetary waves propagating upward may cause displacement or even splitting of the weak vortex and sudden stratospheric warming. During this negative NAO phase the weakened westerlies allow more cold air to build up over North America and Eurasia.


geomagnetic activity solar wind polar vortex intensification downward winds 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baldwin M.P. and Dunkerton T.J., 2001. Stratospheric harbingers of anomalous weather regimes. Science, 294, 581–584.CrossRefGoogle Scholar
  2. Baldwin M.P. and Dunkerton T.J., 2005. The solar cycle and stratosphere-troposphere dynamical coupling. J. Atmos. Sol.-Terr. Phys., 67, 71–82.Google Scholar
  3. Benedict J.J., Lee S. and Feldstein S. B., 2004. Synoptic view of the North Atlantic Oscillation. J. Atmos. Sci., 61, 121–144.CrossRefGoogle Scholar
  4. Black R.X., 2002. Stratospheric forcing of surface climate in the Arctic Oscillation. J. Climate, 15, 268–277.CrossRefGoogle Scholar
  5. Bochnícek J. and Hejda P., 2005. The winter NAO pattern changes in association with solar and geomagnetic activity. J. Atmos. Sol.-Terr. Phys., 67, 17–32.Google Scholar
  6. Bucha V., 1976. Variations of the geomagnetic field, the climate and weather. Stud. Geophys.Geod., 20, 149–167.CrossRefGoogle Scholar
  7. Bucha V., 2012. Changes in geomagnetic activity and global temperature during the past 40 years. Stud. Geophys. Geod., 56, 1095–1107.CrossRefGoogle Scholar
  8. Bucha V. and Bucha V. Jr., 1998. Geomagnetic forcing of changes in climate and in the atmospheric circulation. J. Atmos. Sol.-Terr. Phys., 60, 145–169.Google Scholar
  9. Dunlop M.W., Zhang Q.-H., Xiao C.-J., He J.-S., Pu Z., Fear R.C., Shen C. and Escoubet C.P., 2009. Reconnection at high latitudes: Antiparallel merging. Phys. Rev. Lett., 102, 075005, DOI:  10.1103/PhysRevLett.102.075005.CrossRefGoogle Scholar
  10. Feldstein S.B., 2003. The dynamics of NAO teleconnection pattern growth and decay. Q. J. R. Meteorol. Soc., 129, 901–924.CrossRefGoogle Scholar
  11. Francis J.A. and Vavrus S.J., 2012. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801, DOI:  10.1029/2012GL051000.CrossRefGoogle Scholar
  12. Hasegawa H., Fujimoto M., Phan T.D., Rème H., Balogh A., Dunlop M.W. Hashimoto C. and TanDokoro R., 2004. Transport of solar wind into Earth’s magnetosphere through rolled-up Kelvin-Helmholtz vortices. Nature, 430, 755–758.CrossRefGoogle Scholar
  13. Hurrell J.W., Kushnir Y., Ottersen G. and Visbeck M., 2003. An Overview of the North Atlantic Oscillation. Geophysical Monograph 134, American Geophysical Union Washington, DC, DOI:  10.1029/134GM01.
  14. Hurrell J.W. and NationalCenter for Atmospheric Research Staff (Eds). The Climate Data Guide: Hurrell North Atlantic Oscillation (NAO) Index (Station-Based). Scholar
  15. Hwang K.-J., Goldstein M.L., Kuznetsova M.M., Wang Y., Viñas A.F. and Sibeck D.G., 2012. The first in situ observation of Kelvin-Helmholtz waves at high-latitude magnetopause during strongly dawnward interplanetary magnetic field conditions. J. Geophys. Res., 117, A08233, DOI:  10.1029/2011JA017256.CrossRefGoogle Scholar
  16. Kodera K. and Kuroda Y., 2005. A possible mechanism of solar modulation of the spatial structure of the North Atlantic Oscillation. J. Geophys. Res., 110, D02111, DOI:  10.1029/2004JD005258.CrossRefGoogle Scholar
  17. Li Y., Lu H., Jarvis M.J., Clilverd M.A. and Bates B., 2011. Nonlinear and nonstationary influences of geomagnetic activity on the winter North Atlantic Oscillation. J. Geophys. Res., 116, D16109.CrossRefGoogle Scholar
  18. Limpasuvan V., Hartmann D.L., Thompson D.W.J., Jeev K. and Yunks Y.L., 2005. Stratospheretroposphere evolution during polar vortex intensification. J. Geophys. Res., 110, D24101, DOI:  10.1029/2005JD006302.CrossRefGoogle Scholar
  19. Lockwood M., Stamper R. and Wild M.N., 1999. A doubling of the Sun’s coronal magnetic field during the past 100 years. Nature, 399, 437–439.CrossRefGoogle Scholar
  20. Lukianova R. and Alekseev G., 2004. Long-term correlation between the NAO and solar activity. Sol. Phys., 224, 445–454.CrossRefGoogle Scholar
  21. Manney G.L., Kirstin Krüger K., Sabutis J.L., Sara Amina Sena S.A. and Pawson S., 2005. The remarkable 2003-2004 winter and other recent warm winters in the Arctic stratosphere since the late 1990s. J. Geophys. Res., 110, D04107, DOI:  10.1029/2004JD005367.CrossRefGoogle Scholar
  22. Matthes K., Kuroda Y., Kodera K. and Langematz U., 2006. Transfer of the solar signal from the stratosphere to the troposphere. J. Geophys.Res., 111, D06108, DOI:  10.1029/2005JD006283.CrossRefGoogle Scholar
  23. Matthewman N.J. and Esler J.G., 2011. Stratospheric sudden warmings as self-tuning resonances. Part I: Vortex splitting events. J. Atmos. Sci., 68, 2481–2504.CrossRefGoogle Scholar
  24. Palamara D. and Bryant E., 2004. Geomagnetic activity forcing of the Northern Annular Mode via the stratosphere. Ann. Geophys., 22, 725–731.CrossRefGoogle Scholar
  25. Reichler T., Kushner P.J., Polvani L.M., 2005. The coupled stratosphere-troposphere response to impulsive forcing from the troposphere. J. Atmos. Sci., 62, 3337–3352.CrossRefGoogle Scholar
  26. Scott R.K. and Dritschel D.G., 2005. Downward wave propagation on the polar vortex. J. Atmos. Sci., 62, 3382–3395.CrossRefGoogle Scholar
  27. Thejll P., Christiansen B. and Gleisner H., 2003. On correlations between the North Atlantic Oscillation, geopotential heights and geomagnetic activity. Geophys. Res. Lett., 30, 1347.CrossRefGoogle Scholar
  28. Wallace J.M., 2000. North Atlantic Oscillation/annular mode: Two paradigms- one phenomenon. Q. J. R. Meteorol. Soc., 126, 791–806.CrossRefGoogle Scholar
  29. Waugh D.W. and Polvani L.M., 2010. Stratospheric Polar Vortices. The Stratosphere: Dynamics, Transport, and Chemistry. Geophysical Monograph Series 190, American Geophysical Union Washington, DC, DOI:  10.1029/2009GM000887.

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2014

Authors and Affiliations

  1. 1.Institute of GeophysicsAcad. Sci. Czech RepublicPraha 4Czech Republic

Personalised recommendations