Studia Geophysica et Geodaetica

, Volume 59, Issue 3, pp 424–437 | Cite as

The reduction of hydrology-induced gravity variations at sites with insufficient hydrological instrumentation

  • Michal MikolajEmail author
  • Bruno Meurers
  • Marcel Mojzeš


The hydrology-induced gravity variation is a limiting factor in the study of geophysical phenomena with superconducting gravimeters. The goal of this paper is to analyse and reduce the hydrological effects on gravity at the Vienna (Austria) station that is a typical example of a site insufficiently equipped with hydro-meteorological sensors. The hydrological effects are studied in a local as well as a global scale. A new method for computing the local soil moisture effect is presented. This approach overcomes the lack of in situ soil moisture observations and utilizes gravity residuals in the calibration process of a local conceptual 1D soil moisture model. In addition, only a priori soil moisture variations, provided by a global hydrological model, in situ temperature, precipitation and snow height time series are required in this approach. The coupling of the calibration process to gravity residuals increases the sensitivity of the modelled soil moisture to corrections that are applied within the processing of the gravity observations. This is shown in this study using different global hydrological corrections. The differences between these corrections are reflected in the modelled soil moisture so that the total hydrological effect (local plus global) is almost identical. The total hydrological effects reduce the observed gravity variation by 30%. Moreover, both seasonal as well as shortterm variations clearly related to observed hydro-meteorological parameters are minimized. On the other hand, the sensitivity of the modelled soil moisture to gravity corrections implies that the long-term gravity residuals are not suitable for local hydrological studies unless the significant differences between the global hydrological corrections are resolved.


superconducting gravimeter hydrological modelling soil moisture global hydrological effects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banka D. and Crossley D., 1999. Noise levels of superconducting gravimeters at seismic frequencies. Geophys. J. Int., 139, 87–97.CrossRefGoogle Scholar
  2. Boy J.-P. and Hinderer J., 2006. Study of the seasonal gravity signal in superconducting gravimeter data. J. Geodyn., 41, 227–233.CrossRefGoogle Scholar
  3. Brocca L., Melone F. and Moramarco T., 2008. On the estimation of antecedent wetness conditions in rainfall–runoff modelling. Hydrol. Process., 22, 629–642.CrossRefGoogle Scholar
  4. Courtier N., Ducarme B., Goodkind J., Hinderer J., Imanishi Y., Seama N., Sun H., Merriam J., Bengert B. and Smylie D.E., 2000. Global superconducting gravimeter observations and the search for the translational modes of the inner core. Phys. Earth Planet Inter., 117, 3–20.CrossRefGoogle Scholar
  5. Creutzfeldt B., Güntner A., Wziontek H. and Merz B., 2010a. Reducing local hydrology from highprecision gravity measurements: a lysimeter-based approach. Geophys. J. Int., 183, 178–187.CrossRefGoogle Scholar
  6. Creutzfeldt B., Güntner A., Vorogushyn S. and Merz B., 2010b. The benefits of gravimeter observations for modelling water storage changes at the field scale. Hydrol. Earth Syst. Sci., 14, 1715–1730.CrossRefGoogle Scholar
  7. Creutzfeldt B., Ferré T., Troch P., Merz B., Wziontek H. and Güntner A., 2012. Total water storage dynamics in response to climate variability and extremes: Inference from long-term terrestrial gravity measurement. J. Geophys. Res.-Atmos., 117, D08112.Google Scholar
  8. Dee D.P., Uppala S.M., Simmons A.J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M.A., Balsamo G., Bauer P., Bechtold P., Beljaars A.C.M., van de Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A.J., Haimberger L., Healy S.B., Hersbach H., Hólm E.V., Isaksen L., Kållberg P., Köhler M., Matricardi M., McNally A.P., Monge-Sanz B.M., Morcrette J.J., Park B.K., Peubey C., de Rosnay P., Tavolat C., Thépaut J.N. and Vitart F., 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q.J. Roy. Meteor. Soc., 137, 553–597.CrossRefGoogle Scholar
  9. Döll P., Kaspar F. and Lehner B., 2003. A global hydrological model for deriving water availability indicators: model tuning and validation. J. Hydrol., 270, 105–134.CrossRefGoogle Scholar
  10. Ducarme B., Sun H.-P. and Xu J.-Q., 2007. Determination of the free core nutation period from tidal gravity observations of the GGP superconducting gravimeter network. J. Geodesy, 81, 179–187.CrossRefGoogle Scholar
  11. Farrell W.E., 1972. Deformation of the Earth by surface loads. Rev. Geophys., 10, 761–797.CrossRefGoogle Scholar
  12. Fukumori I., 2002. A Partitioned Kalman Filter and Smoother. Mon. Weather Rev., 130, 1370–1383.CrossRefGoogle Scholar
  13. Hasan S., Troch P.A., Boll J. and Kroner C., 2006. Modeling the hydrological effect on local gravity at Moxa, Germany. J. Hydrometeorol., 7, 346–354.CrossRefGoogle Scholar
  14. Heck B. and Seitz K., 2007. A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling. J. Geodesy, 81, 121–136.CrossRefGoogle Scholar
  15. Hinderer J., Crossley D. and Warburton R.J., 2007. Gravimetric methods — superconducting gravity meters. In: Schubert G. (Ed.), Treatise on Geophysics, 3. Elsevier, Amsterdam, 65–122.CrossRefGoogle Scholar
  16. Hinderer J., Pfeffer J., Boucher M., Nahmani S., Linage C., Boy J.P., Genthon P., Seguis L., Favreau G., Bock O. and Descloitres M., 2012. Land water storage changes from ground and space geodesy: first results from the GHYRAF (Gravity and Hydrology in Africa) experiment. Pure Appl. Geophys., 169, 1391–1410.CrossRefGoogle Scholar
  17. Johnson A.I., 1967. Specific Yield-Compilation of Specific Yields for Various Materials. Water Supply Paper 1662-D. United States Government Printing Office, Washington D.C.Google Scholar
  18. Jonas T., Marty C. and Magnusson J., 2009. Estimating the snow water equivalent from snow depth measurements in the Swiss Alps. J. Hydrol., 378, 161–167.CrossRefGoogle Scholar
  19. Kim S.-B., Lee T. and Fukumori I., 2007. Mechanisms controlling the interannual variation of mixed layer temperature averaged over the Niño-3 region. J. Climate, 20, 3822–3843.CrossRefGoogle Scholar
  20. Klügel T. and Wziontek H., 2009. Correcting gravimeters and tiltmeters for atmospheric mass attraction using operational weather models. J. Geodyn., 48, 204–210.CrossRefGoogle Scholar
  21. Longuevergne L., Boy J.P., Florsch N., Viville D., Ferhat G., Ulrich P., Luck B. and Hinderer J., 2009. Local and global hydrological contributions to gravity variations observed in Strasbourg. J. Geodyn., 48, 189–194.CrossRefGoogle Scholar
  22. Lundberg A., Richardson-Näslund C. and Andersson C., 2006. Snow density variations: consequences for ground-penetrating radar. Hydrol. Process., 20, 1483–1495.CrossRefGoogle Scholar
  23. Marchand W., 2003. Applications and Improvement of a Georadarsystem to Assess Areal Snow Distribution for Advances in Hydrological Modelling. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway.Google Scholar
  24. Merriam J.B., 1992. Atmospheric pressure and gravity. Geophys. J. Int., 109, 488–500.CrossRefGoogle Scholar
  25. Meurers B., 2006. Long and short term hydrological effects on gravity in Vienna. Bulletin d’Information des Marées Terrestres, 142, 11343–11351.Google Scholar
  26. Moore I.D., Grayson R.B. and Ladson A.R., 1991. Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrol. Process., 5, 3–30.CrossRefGoogle Scholar
  27. Mörikofer W., 1948. The dependence on altitude of the snow cover in the Alps. In: Proceedings Union Géodésique et Géophysique, Oslo, 161–170.Google Scholar
  28. Naujoks M., Kroner C., Weise A., Jahr T., Krause P. and Eisner S., 2010. Evaluating local hydrological modelling by temporal gravity observations and a gravimetric three-dimensional model. Geophys. J. Int., 182, 233–249.Google Scholar
  29. Pagiatakis S.D., 1988. Ocean Tide Loading on a Self-Gravitating, Compressible, Layered, Anisotropic, Viscoelastic and Rotating Earth with Solid Inner Core and Fluid Outer Core. Technical Report 139. University of New Brunswick, Fredericton, Canada.Google Scholar
  30. Rodell M., Houser P.R., Jambor U., Gottschalck J., Mitchell K., Meng C.J., Arsenault K., Cosgrove B., Radakovich J., Bosilovich M., Entin J.K., Walker J.P., Lohmann D. and Toll D., 2004. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc., 85, 381–394.CrossRefGoogle Scholar
  31. Steffen H. and Wu P., 2011. Glacial isostatic adjustment in Fennoscandia- A review of data and modeling. J. Geodyn., 52, 169–204.CrossRefGoogle Scholar
  32. Todd D.K. and Mays L.W., 2005. Groundwater Hydrology. 3rd Edition. John Wiley and Sons, Inc. Hoboken, NJ.Google Scholar
  33. Van Camp M., 1999. Measuring seismic normal modes with the GWR C021 superconducting gravimeter. Phys. Earth Planet Inter., 116, 81–92.CrossRefGoogle Scholar
  34. Van Camp M., de Viron O., Scherneck H.-G., Hinzen K.-G., Williams S.D.P., Lecocq T., Quinif Y. and Camelbeeck T., 2011. Repeated absolute gravity measurements for monitoring slow intraplate vertical deformation in western Europe. J. Geophys. Res.-Sol. Earth, 116, B08402.Google Scholar
  35. Virtanen H., Tervo M. and Bilker-Koivula M., 2006. Comparison of superconducting gravimeter observations with hydrological models of various spatial extents. Bulletin d’Information des Marées Terrestres, 142, 11361–11368.Google Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2015

Authors and Affiliations

  1. 1.Section HydrologyGFZ German Research Centre for GeosciencesPotsdamGermany
  2. 2.Department of Meteorology and GeophysicsUniversity of ViennaViennaAustria
  3. 3.Department of Theoretical GeodesySlovak University of TechnologyBratislavaSlovakia

Personalised recommendations