Skip to main content

Magnetic, chemical and radionuclide studies of river sediments and their variation with different physiographic regions of Bharathapuzha river, southwestern India

Abstract

Bharathapuzha River is the second longest river in southwest India, where three physiographic regions show a distinctive spatial variation and their bed sediments can be considered environmental hosts for end-products generated by human activities and natural radionuclide components. Thus, the study of this river sediments in SW India is important not only because they are recorders of adverse human impacts (e.g., intense agricultural activities and urban pollution), but also because of their potential health hazards due to their common use as construction materials. Magnetic (e.g., magnetic susceptibility, anhysteretic remanent magnetisation and isothermal remanent magnetisation), radionuclide (226Ra, 232Th and 40K) and chemical (trace and major elements) measurements were carried out in bed sediment samples along 33 sites from the uppermost catchment downstream. Magnetic measurements show the dominance of ferrimagnetic minerals; their concentration ranges widely along the river and between regions, showing up to 7-fold higher values for concentration-dependent magnetic parameters, e.g., mean values of saturation of isothermal remanent magnetisation acquisition are 67.9 and 9.4 × 10-3 Am2 kg-1 for highland and lowland regions, respectively. Multivariate statistical analyses show the existence of relationships between magnetic, radioactivity and chemical variables. In particular, magnetic concentrationdependent parameters are significantly correlated with radioactivity variables 40K and 226Ra (with concentrations about 20% higher than the worldwide mean values), as well as with some elements: Fe, Ca and P. Such analyses also show differences between physiographic regions where samples from the highland (and lowland) region are well grouped showing higher (lower) magnetic concentrations and lower (higher) coercivity minerals. The spatial variation of magnetic parameters along the river can be related to the influence of both natural sources and human activities, i.e. urbanisation and intense agricultural activities. In this sense, environmental magnetism data provide very useful tools to investigate adverse human activities occurring in the riverine environment.

This is a preview of subscription content, access via your institution.

References

  1. Agustine E., Fitriani D., Safiuddin L.O, Tamuntuan G. and Bijaksana S., 2013. Magnetic susceptibility properties of pesticide contaminated volcanic soil AIP Conference Proceedings, 1554, 230–233.

    Article  Google Scholar 

  2. Akhtar N., Tufail M., Ashraf M. and Mohsin Iqbal M., 2005. Measurement of environmental radioactivity for estimation of radiation exposure from saline soil of Lahore, Pakistan. Radiat. Meas., 39, 11–14.

    Article  Google Scholar 

  3. Alharbi W.R., 2013. Natural radioactivity and dose assessment for brands of chemical and organic fertilizers used in Saudi Arabia. J. Modern Phys., 4, 344–348.

    Article  Google Scholar 

  4. Basak P., James E.J. and Nandeshwar M.D., 1995. Water Atlas of Kerala. CWRDM/ STEC, Calicut, India.

    Google Scholar 

  5. Beckwith P., Ellis J., Revitt D. and Oldfield F., 1986 Heavy metal and magnetic relationships for urban source sediments. Phys. Earth Planet. Inter., 42, 67–75.

    Article  Google Scholar 

  6. Bulman R.A., Johnson T.E. and Reed A.L., 1984. An examination of new procedures for fractionation of plutonium- and americium-bearing sediments. Sci. Tot. Environ., 35, 239–250.

    Article  Google Scholar 

  7. Chandrajith R., Seneviratna S., Wickramaarachchi K., Attanayake T., Aturaliya T.N.C. and Dissanayake C.B., 2010. Natural radionuclides and trace elements in rice field soils in relation to fertilizer application: study of a chronic kidney disease area in Sri Lanka. Environ. Earth Sci., 60, 193–201.

    Article  Google Scholar 

  8. Chaparro M.A.E, Bidegain J.C., Sinito A.M., Jurado S. and Gogorza C.S., 2004. Relevant magnetic parameters and heavy metals from relatively polluted stream-sediments- spatial distribution along a cross-city stream in Buenos Aires Province, Argentina. Stud. Geophys. Geod., 48, 615–636.

    Article  Google Scholar 

  9. Chaparro M.A.E, Gogorza C.S.G., Chaparro M.A.E., Irurzun M.A. and Sinito A.M., 2006. Review of magnetism and pollution studies of various environments in Argentina. Earth Planets Space, 58, 1411–1422.

    Article  Google Scholar 

  10. Chaparro M.A.E., Sinito A.M., Ramasamy V., Marinelli C., Chaparro M.A.E., Mullainathan S. and Murugesan S., 2008. Magnetic measurements and pollutants of sediments from Cauvery and Palaru River, India. Environ. Geol., 56, 425–437.

    Article  Google Scholar 

  11. Chaparro M.A.E., Chaparro M.A.E., Rajkumar P., Ramasamy V. and Sinito A.M., 2011. Magnetic parameters, trace elements and multivariate statistical studies of river sediments from south eastern India: A case study from Vellar River. Environ. Earth Sci., 63, 297–310.

    Article  Google Scholar 

  12. Chaparro M.A.E., Chaparro M.A.E. and Sinito A.M., 2012. An interval fuzzy model for magnetic monitoring: estimation of a pollution index. Environ. Earth Sci., 66, 1477–1485.

    Article  Google Scholar 

  13. Chaparro M.A.E., Suresh G., Chaparro M.A.E., Ramasamy V. and Sinito A.M., 2013. Magnetic studies and elemental analysis of river sediments: A case study from the Ponnaiyar River (southeastern India). Environ. Earth Sci., 70, 201–213.

    Article  Google Scholar 

  14. Chauhan P., Chauhan R.P. and Gupta M., 2013. Estimation of naturally occurring radionuclides in fertilizers using gamma spectrometry and elemental analysis by XRF and XRD techniques. Microchem. J., 106, 73–78.

    Article  Google Scholar 

  15. Chen W., Chang A.C. and Wu L., 2007. Assessing long-term environmental risks of trace elements in phosphate fertilizers. Ecotoxicol. Environ. Safe., 67, 48–58.

    Article  Google Scholar 

  16. De Meijer R.J., Put L.W., Bergman R., Landeweer G., Riezebos H.J., Schuiling R.D., Scholten M.J. and Veldhuizen A., 1985.. Local variation of outdoor radon concentrations in the Netherlands and physics properties of sand with enhanced natural radioactivity. Sci. Tot. Environ., 45, 101–109.

    Article  Google Scholar 

  17. De Meijer R.J., Lesscher H.M.E., Schuiling R.D. and Eldburg M.E., 1990. Estimate of the heavy mineral content in sand and its provenance by radiometric methods. Nucl. Geophys., 4, 450–460.

    Google Scholar 

  18. Dearing J., 1999. Magnetic susceptibility. In: Walden J., Oldfield F. and Smith J. (Eds), Environmental Magnetism: a Practical Guide. Technical Guide No. 6. Quaternary Research Association, London U.K., 35–62.

    Google Scholar 

  19. Dearing J., Dann R., Hay K., Lees J., Loveland P., Maher B. and O’Grady K., 1996. Frequencydependent susceptibility measurements of environmental materials. Geophys. J. Int., 124, 228–240.

    Article  Google Scholar 

  20. Desenfant F., Petrovský E. and Rochette P., 2004. Magnetic signature of industrial pollution of stream sediments and correlation with heavy metals: case study from South France. Water Air Soil Pollut., 152, 297–312.

    Article  Google Scholar 

  21. Dunlop D.J. and Özdemir Ö., 1997. Rock Magnetism. Fundamentals and Frontiers. Cambridge University Press, Cambridge U.K., 573 pp.

    Book  Google Scholar 

  22. El-Bahi S.M., 2004. Assessment of radioactivity and radon exhalation rate in Egyptian cement. Health Phys., 86, 517–522.

    Article  Google Scholar 

  23. El-Gamal A., Nasr S. and El-Taher A., 2007. Study of the spatial distribution of natural radioactivity in the upper Egypt Nile River sediments. Radiat. Meas., 42, 457–465.

    Article  Google Scholar 

  24. Elejalde C., Herranz M., Romero F. and Legarda F., 1996. Correlations between soil parameters and radionuclide contents in samples from Biscay (Spain). Water Air Soil Pollut., 89, 23–31.

    Article  Google Scholar 

  25. Evans M.E. and Heller F., 2003. Environmental Magnetism, Principles and Applications of Enviromagnetics. Academic Press, New York, 299 pp.

    Google Scholar 

  26. Franke C., Kissel C., Robin E., Bonté P. and Lagroix F., 2009. Magnetic particle characterization in the Seine river system: Implications for the determination of natural versus anthropogenic input. Geochem. Geophys. Geosyst., 10, Q08Z0.

  27. Guereschi A. and Baldo E., 1993. Petrología y geoquímica de las rocas metamórficas del sector centro-oriental de la Sierra de Comechingones, Córdoba. XII Congreso Geológico Argentino y II Congreso de Exploración de Hidrocarburos. Actas I: 1–5 (in Spanish).

    Google Scholar 

  28. Hunt A., Jones J. and Oldfield F., 1984. Magnetic measurements and heavy metals in atmospheric particulates of anthropogenic origin Sci. Tot. Environ., 33, 129–139.

    Article  Google Scholar 

  29. Jibiri N.N. and Fasae K.P., 2012. Activity concentrations of 226Ra, 232Th and 40K in brands of fertilizer used in Nigeria. Radiat. Prot. Dosim., 148, 132–137.

    Article  Google Scholar 

  30. Jordanova D.V., Hoffmann V. and Fehr T.K., 2004. Mineral magnetic characterization of anthropogenic magnetic phases in the Danube river sediments (Bulgarian part). Earth Planet. Sci. Lett., 221, 71–89.

    Article  Google Scholar 

  31. Kannan N. and Joseph S., 2009. Quality of groundwater in the shallow aquifers of a paddy dominated agricultural river basin, Kerala, India. World Acad. Sci. Eng. Technol., 3, 1137–1155.

    Google Scholar 

  32. King J., Banerjee S.K., Marvin J. and Özdemir Ö., 1982. A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials: Some results from lake sediments. Earth Planet. Sci. Lett., 59, 404–419.

    Article  Google Scholar 

  33. Knab M., Hoffmann V., Petrovský E., Kapicka A., Jordanova N. and Appel E., 2006. Surveying the anthropogenic impact of the Moldau river sediments and nearby soils using magnetic susceptibility. Environ. Geol., 49, 527–535.

    Article  Google Scholar 

  34. Krishnamoorthy N., Mullainathan S., Mehra R., Chaparro M.A.E. and Chaparro M.A.E., 2014. Radiation impact assessment of naturally occurring radionuclides and magnetic mineral studies of Bharathapuzha river sediments, South India. Environ. Earth. Sci., 71, 3593–3604.

    Google Scholar 

  35. Lecomte K.L., 2006. Control geomorfológico en la geoquímica de los ríos de Montaña, Sierras Pampeanas, Provincia de Córdoba, Argentina. PhD Thesis, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina, 279 pp. (in Spanish).

    Google Scholar 

  36. Ligero R.A., Ramos-Lerate I., Barrera M. and Casas-Ruiz M., 2001. Relationships between sea-bed radionuclide activities and some sedimentological variables J. Environ. Radioact., 57, 7–19.

    Article  Google Scholar 

  37. Magesh N.S., Jitheshlal K.V., Chandrasekar N. and Jini K.V., 2013. Geographical information system-based morphometric analysis of Bharathapuzha river basin, Kerala, India. Appl. Water. Sci., 3, 467–477.

    Article  Google Scholar 

  38. Magiera T., Strzyszcz Z. and Kostecki M., 2002. Seasonal changes of magnetic susceptibility in sediments from Lake Zywiec (South Poland). Water Air Soil Pollut., 141, 55–71.

    Article  Google Scholar 

  39. Maher B.A., Thompson R. and Hounslow M.W., 1999. Introduction. In: Maher B.A. and Thompson R. (Eds), Quaternary Climate, Environments and Magnetism. Cambridge University Press, Cambridge U.K., 1–48.

    Chapter  Google Scholar 

  40. McCubbin D., Leonard K.S., Young A.K., Maher B.A. and Bennett S., 2004. Application of magnetic extraction technique to assess radionuclide-mineral association in Cumbrian shoreline sediments. J. Environ. Radioact., 77, 11–131.

    Google Scholar 

  41. McLennan S.M., 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem. Geophys. Geosyst., 2, 2000GC000109.

  42. Milliman J.D. and Farnsworth K.L., 2011. River Discharge to the Coastal Ocean. A Global Synthesis. Cambridge University Press, Cambridge U.K.

    Book  Google Scholar 

  43. Montes M.L., Mercader R.C., Taylor M.A., Runco J. and Desimoni J., 2012. Assessment of natural radioactivity levels and their relationship with soil characteristics in undisturbed soils of the northeast of Buenos Aires province, Argentina J. Environ. Radioact., 105, 30–39.

    Article  Google Scholar 

  44. Mustonen R., 1985. Radioactivity of fertilizers in Finland. Sci. Tot. Environ., 45, 127–134.

    Article  Google Scholar 

  45. Nikhil Raj P.P. and Azeez P.A., 2012. Morphometric analysis of a tropical medium river system: A case from Bharathapuzha River, Southern India. Open J. Modern Hydrol., 2, 91–98.

    Article  Google Scholar 

  46. Parizanganeh A.H., Bijnavand V., Zamani A.A. and Hajabolfath A., 2012. Concentration, distribution and comparison of total and bioavailable heavy metals in top soils of Bonab District in Zanjan Province. Open J. Soil Sci., 2, 123–132.

    Article  Google Scholar 

  47. Peters C. and Dekkers M.J., 2003. Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size. Phys. Chem. Earth, 28, 659–667.

    Article  Google Scholar 

  48. Petrovský E. and Elwood B.B., 1999. Magnetic monitoring of air, land and water pollution. In: Maher B.A. and Thompson R. (Eds), Quaternary Climate, Environments and Magnetism. Cambridge University Press, Cambridge U.K., 279–322.

    Chapter  Google Scholar 

  49. Raj N. and Azeez P.A., 2009. Spatial and temporal variation in Surface water chemistry of a tropical river, the river Bharathapuzha, India. Current Sci., 96, 245–251.

    Google Scholar 

  50. Ramasamy V., Paramasivam K., Suresh G. and Jose M.T., 2014. Role of sediments characteristcs on natural radiation level of the Vaigai river sediment, Tamilnadu, India. J. Environ. Radioact., 127, 64–74.

    Article  Google Scholar 

  51. Rapela C.W., 1982. Aspectos geoquímicos y petrológicos del Batolito de Achala, provincia de Córdoba. Revista de la Asociación Geológica Argentina, 37, 314–330 (in Spanish).

    Google Scholar 

  52. Righi S., Lucialli P. and Bruzzi L., 2005. Health and environmental impacts of a fertilizer plant — Part I: assessment of radioactive pollution J. Environ. Radioact., 82, 167–182.

    Article  Google Scholar 

  53. Roselli C., Desideri D., Assunta Meli M. and Feduzi L., 2010. Sequential extraction for the leachability evaluation of phosphate fertilizers. Microchem. J., 95, 373–376.

    Article  Google Scholar 

  54. Sakthimurugan S., 2007. Groundwater Information Booklet of Thrissur District, Kerala State. Central Ground Water Board, Thiruvananthapuram, Kerala, India (http://cgwb.gov.in/District_Profile/Kerala/Thrissur.pdf).

    Google Scholar 

  55. Sandeep K., Shankar R. and Krishnaswamy J., 2011. Assessment of suspended particulate pollution in the Bhadra River catchment, Southern India: an environmental magnetic approach. Environ. Earth Sci., 62, 625–637.

    Article  Google Scholar 

  56. Savci S., 2012. An agricultural pollutant: chemical fertilizer. Int. J. Environ. Sci. Develop., 3, 77–80.

    Google Scholar 

  57. Scholger R., 1998. Heavy metal pollution monitoring by magnetic susceptibility measurements applied to sediments of the river Mur (Styria, Austria). Eur. J. Environ. Eng. Geophys., 3, 25–37.

    Google Scholar 

  58. Scholten L.C. and Timmermans C.W.M., 1996. Natural radioactivity in phosphate fertilizers. Fertil. Res., 43, 103–107.

    Article  Google Scholar 

  59. Sreela S.R., 2009. An Integrated Study on the Hydrogeology of Bharathapuzha River Basin, South West Coast of India. Ph.D Thesis, Cochin University of Science and Technolology, Cochin, Kerala, India.

    Google Scholar 

  60. Sreela R., Rej S., Girish G., Rajesh R. and Kurian S., 2012. A numerical weighted parameter rating (WPR) for artificial groundwater recharging in Bharathapuzha river basin: Southern India Int. J. Earth Sci. Eng., 5, 268–275.

    Google Scholar 

  61. Suresh G., Ramasamy V., Meenakshisundaram V., Venkatachalapathy R. and Ponnusamy V., 2011. A relationship between the natural radioactivity and mineralogical composition of the Ponnaiyar river sediments, India. J. Environ. Radioact., 102, 370–377.

    Article  Google Scholar 

  62. Thompson R. and Oldfield F., 1986. Environmental Magnetism. Allen & Unwin Publishers Ltd., London U.K., 225 pp.

    Book  Google Scholar 

  63. Tume P., Bech J., Longan L., Tume L., Reverter F. and Sepúlveda B., 2006. Trace elements in natural surface soils in Sant Climent (Catalonia, Spain). Ecol. Eng., 27, 145–152.

    Article  Google Scholar 

  64. UNSCEAR, 2000. United Nations Scientific Committee on the Effect of Atomic Radiation. Sources and Effects of Ionizing Radiation. Report to General Assembly. United Nations Organization, New York.

    Google Scholar 

  65. Veiga R., Sancher N., Anjos R.M., Macario K., Bastos J., Iguatemya M., Aguiar J.G., Santos A.M.A., Mosquera B., Carvalho C., Baptista F.M. and Umisedo N.K., 2006. Measurement of natural radioactivity in Brazilian beach sands. Radiat. Meas., 4, 189–196.

    Article  Google Scholar 

  66. Yafa C. and Farmer J.G., 2006. A comparative study of acid-extractable and total digestion methods for the determination of inorganic elements in peat material by inductively coupled plasmaoptical emission spectrometry. Analytica Chimica Acta, 557, 296–303.

    Article  Google Scholar 

  67. Yang T., Liu Q., Chan L. and Liu Z., 2007. Magnetic signature of heavy metals pollution of sediments: Case study from the East Lake in Wuhan, China. Environ. Geol., 52, 1639–1650.

    Article  Google Scholar 

  68. Zhang C.X., Qiao Q., Piper J.D.A. and Huang B., 2011. Assessment of heavy metal pollution from a Fe-smelting plant in urban river sediments using environmental magnetic and geochemical methods. Environ. Pollut., 159, 3057–3070.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marcos A. E. Chaparro.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chaparro, M.A.E., Krishnamoorthy, N., Chaparro, M.A.E. et al. Magnetic, chemical and radionuclide studies of river sediments and their variation with different physiographic regions of Bharathapuzha river, southwestern India. Stud Geophys Geod 59, 438–460 (2015). https://doi.org/10.1007/s11200-014-0145-6

Download citation

Keywords

  • magnetic parameters
  • major and trace elements
  • multivariate statistical