Skip to main content

Absolute geomagnetic paleointensity as recorded by ∼1.09 Ga Lake Shore Traps (Keweenaw Peninsula, Michigan)

Abstract

Absolute geomagnetic paleointensity measurements were made on 255 samples from 38 lava flows of the ∼1.09 Ga Lake Shore Traps exposed on the Keweenaw Peninsula (Michigan, USA). Samples from the lava flows yield a well-defined characteristic remanent magnetization (ChRM) component within a ∼375°C–590°C unblocking temperature range. Detailed rock magnetic analyses indicate that the ChRM is carried by nearly stoichiometric pseudo-single-domain magnetite and/or low-Ti titanomagnetite. Scanning electron microscopy reveals that the (titano)magnetite is present in the form of fine intergrowths with ilmenite, formed by oxyexsolution during initial cooling. Paleointensity values were determined using the Thellier double-heating method supplemented by low-temperature demagnetization in order to reduce the effect of magnetic remanence carried by large pseudosingle-domain and multidomain grains. One hundred and two samples from twenty independent cooling units meet our paleointensity reliability criteria and yield consistent paleofield values with a mean value of 26.3 ± 4.7μT, which corresponds to a virtual dipole moment of 5.9 ± 1.1×1022 Am2. The mean and range of paleofield values are similar to those of the recent Earth’s magnetic field and incompatible with a “Proterozoic dipole low”. These results are consistent with a stable compositionally-driven geodynamo operating by the end of Mesoproterozoic.

This is a preview of subscription content, access via your institution.

References

  • Aubert J., Tarduno J.A. and Johnson C.L., 2010. Observations and models of the long-term evolution of Earth’s magnetic field. Space Sci. Rev., 155, 337–370.

    Article  Google Scholar 

  • Bickford L.R. Jr., 1950. Ferromagnetic resonance absorption in magnetite single crystals. Phys. Rev., 78, 449–457.

    Article  Google Scholar 

  • Bickford L.R. Jr., Brownlow J.M. and Penoyer R.F., 1957. Magnetocrystalline anisotropy in cobaltsubstituted magnetite single crystals. IEE Proc. B, 104, 238–244.

    Google Scholar 

  • Biggin A.J., Geert H.M., Strick A. and Langeris C.G., 2009. The intensity of the geomagnetic field in the late-Archaean: new measurements and an analysis of the upgraded IAGA paleointensity database. Earth Planets Space, 61, 9–22.

    Google Scholar 

  • Carvallo C., Roberts A., Leonhardt R., Laj C., Kissel C., Perrin M. and Camps P., 2006. Increasing the efficiency of paleointensity analyses by selection of samples using first-order reversal curve (FORC) diagrams. J. Geophys. Res., 111, B12103, DOI: 10.1029/2005JB004126.

    Article  Google Scholar 

  • Carter-Stiglitz B., Moskowitz B. and Jackson M., 2004. More on the low temperature magnetism of stable single domain magnetite: Reversibility and non-stoichiometry. Geophys. Res. Lett., 31, L06606, DOI: 10.1029/2003GL019155.

    Article  Google Scholar 

  • Celino K.R., Trindade I.F. and Tohver E., 2007. LTD-Thellier paleointensity of 1.2 Ga Nova Floresta mafic rocks (Amazon craton). Geophys. Res. Lett., 34, L12306, DOI: 10.1029/2007GL029550.

    Article  Google Scholar 

  • Coe R.S., 1967. Paleointensities of Earth’s magnetic field determined from Tertiary and Quaternary Rocks. J. Geophys. Res., 72, 3247–3262.

    Article  Google Scholar 

  • Coe R.S., Gromme S. and Mankinen E.A., 1978. Geomagnetic Paleointensities from radiocarbondated lava flows on Hawaii and question of the Pacific nondipole low. J. Geophys. Res., 83, 1740–1756.

    Article  Google Scholar 

  • Coe R.S. and Glatzmaier G.A., 2006. Symmetry and stability of the geomagnetic field. Geophys. Res. Lett., 33, L21311, DOI: 10.1029/2006GL027903.

    Article  Google Scholar 

  • Davis D.W. and Paces J.B., 1990. Time resolution of geologic events on the Keweenaw Peninsula and implications for development of the Midcontinent rift system. Earth Planet. Sci. Lett., 97, 54–64.

    Article  Google Scholar 

  • Diehl J.F. and Haig T.D., 1994. A paleomagnetic study of the lava flows within the Copper Harbor Conglomerate, Michigan: new results and implications. Can. J. Earth Sci., 31, 369–380.

    Article  Google Scholar 

  • Diehl J.F., Durant A.J. and Schepke C., 2009. Paleomagnetism of Silver Island, Keweenaw Peninsula, Michigan: Additional Support (?) for the Primary Curvature of the MCR. American Geophysical Union, Spring Meeting 2009, Abstract #GP11E-01.

    Google Scholar 

  • Dodson M.H. and McClelland-Brown E., 1980. Magnetic blocking temperatures of single-domain grains during slow cooling. J. Geophys. Res., 85, 2625–2637.

    Article  Google Scholar 

  • Efron B., 1982. The Jackknife, the Bootstrap, and Other Resampling Plans. CBMS-NSF Regional Conference Series in Applied Mathematics 38. Society for Industrial and Applied Mathematics, Philadelphia, PA.

    Book  Google Scholar 

  • Evans D.A.D., 2006. Proterozoic low orbital obliquity and axial-dipolar geomagnetic field from evaporite palaeolatitudes. Nature, 444, 51–55.

    Article  Google Scholar 

  • Ferk A., Leonhardt R., Hess K.U., Koch S., Krasa D., Egli R., Winklhofer M. and Dingwell D.B., 2012. Cooling rate dependence of the TRM of SD, PSD and MD particles. Geophys. Res. Abs., 14, 5244.

    Google Scholar 

  • Guyodo Y. and Valet J.P., 1999. Global changes in intensity of the Earth’s magnetic field during the past 800 kyr. Nature, 399, 249–252.

    Article  Google Scholar 

  • Haggerty S.E., 1991. Oxide textures — a mini-atlas. Rev. Mineral., 25, 129–219.

    Google Scholar 

  • Halgedahl S.L., Day R. and Fuller M., 1980. The effect of cooling rate on the intensity of weak-field TRM in single-domain magnetite. J. Geophys. Res., 85, 3690–3698.

    Article  Google Scholar 

  • Halls H.C. and Palmer H.C., 1981. Remagnetization in Keweenawan rocks. Part II: lava flows within the Copper Harbor Conglomerate, Michigan. Can. J. Earth Sci., 18, 1395–1408.

    Article  Google Scholar 

  • Halls H.C., McArdle N.J., Gratton M.N., Hill M.J. and Shaw J., 2004. Microwave Paleointensities from dyke chilled margins: a way to obtain long-term variations in geodynamo intensity for the last three billion years. Phys. Earth Planet. Inter., 147, 183–195.

    Article  Google Scholar 

  • Harrison R.J. and Feinberg J.M., 2008. FORCinel: An improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing. Geochem. Geophys. Geosyst., 9, Q05016, DOI: 10.1029/2008GC001987.

    Article  Google Scholar 

  • Hollerbach R. and Jones C.A., 1995. On the magnetically stabilizing role of the Earth’s inner core. Phys. Earth Planet. Inter., 87, 171–181.

    Article  Google Scholar 

  • Jaeger J.C., 1968. Cooling and solidification of igneous rocks. In: Hess H.H. and Poldervaart A. (Eds.), Basalts: The Poldervaart Treatise on Rocks of Basaltic Composition. Interscience Publishers, New York, London, Sydney, 503–536.

    Google Scholar 

  • Johnson C.L., Constable C., Tauxe L., Barendregt R., Brown L., Coe R., Layer P., Mejia V., Opdyke N., Singer B., Staudigel H. and Stone D., 2008. Recent investigations of the 0–5 Ma geomagnetic field recorded by lava flows. Geochem. Geophys. Geosyst., 9, Q04032. DOI: 10.1029/2007GC001696

    Article  Google Scholar 

  • Kosterov A.A. and Prévot M., 1998. Possible mechanisms causing failure of Thellier palaeointensity experiments in some basalts. Geophys. J. Int., 134, 554–572.

    Article  Google Scholar 

  • Labrosse S., Poirier J.P. and Le Mouel J.L., 2001. The age of the inner core. Earth Planet. Sci. Lett., 190, 111–123.

    Article  Google Scholar 

  • Lane A.C., 1911. The Keweenaw Series of Michigan. Wynkoop Hallenbeck Crawford Co., Lansing, Michigan, Canada.

    Google Scholar 

  • Macouin M., Valet J.P., Besse J., Buchan K., Ernst R., LeGoff M. and Scharer U., 2003. Low paleointensities recorded in 1 to 2.4 Ga Proterozoic dykes, Superior Province, Canada. Earth Planet. Sci. Lett., 213, 79–95.

    Article  Google Scholar 

  • Macouin M., Valet J.P., Besse J. and Ernst R., 2006. Absolute paleointensity at 1.27 Ga from Mackenzie dyke swarm (Canada). Geochem. Geophys. Geosyst., 7, DOI: 10.1029/2005GC000960.

  • McArdle N.J., Halls H.C. and Shaw J., 2004. Microwave palaeointensities from 1.1 Ga Keweenawan dykes, Ontario. Geophys. Res. Abs., 6, 06433.

    Google Scholar 

  • McClelland-Brown E., 1984. Experiments on TRM intensity dependence on cooling rate. Geophys. Res. Lett., 11, 205–208.

    Article  Google Scholar 

  • Muxworthy A.R. and McClelland E., 2000. The cause of low-temperature demagnetization of remanence in multidomain magnetite. Geophys. J. Int., 140, 115–131.

    Article  Google Scholar 

  • Nagata T., Arai Y. and Momose K., 1963. Secular variation of the geomagnetic total force during the last 5000 years. J. Geophys. Res., 68, 5277–5281.

    Article  Google Scholar 

  • Paces J.B. and Bornhorst T.J., 1985. Geology and geochemistry of lava flows within the Copper Harbor Conglomerate, Keweenaw Peninsula, Michigan. In: Blackburn C.E. (Ed.), Abstracts, Institute on Lake Superior Geology 31st Annual Meeting. Department of Geology, Lakehead University, Thunder Bay, Ontario, Canada, 71–72 (http://www.d.umn.edu/prc/lakesuperiorgeology/Volumes/ILSG_31_1985_pt1_Kenora.cv.pdf)

    Google Scholar 

  • Palmer H.C., Halls H.C. and Pesonen L.J., 1981. Remagnetization in Keweenawan rocks. Part I: Conglomerates. Can. J. Earth Sci., 18, 599–618.

    Article  Google Scholar 

  • Pesonen L.J. and Halls H.C., 1983. Geomagnetic field intensity and reversal asymmetry in late Precambrian Keweenawan rocks. Geophys. J. Roy. Astr. Soc., 73, 241–270.

    Article  Google Scholar 

  • Roberts A.P., Pike C.R. and Verosub K.L., 2000. FORC diagrams: A new tool for characterizing the magnetic properties of natural samples. J. Geophys. Res., 105, 28461–28475.

    Article  Google Scholar 

  • Schmidt P.W., 1993. Paleomagnetic cleaning strategies. Phys. Earth Planet. Inter., 76, 169–178.

    Article  Google Scholar 

  • Shcherbakova V.V., Lubnina N.V., Shcherbakov V.P., Mertanen S., Zhidkov G.V., Vasilieva T.I. and Tselmovich V.A., 2008. Paleointensity and paleodirectional studies of early Riphaean dyke complexes in the Lake Ladoga region (Northwestern Russia). Geophys. J. Int., 175, 433–448.

    Article  Google Scholar 

  • Selkin P.A., Gee J.S., Tauxe L., Meurer W.P. and Newell A.J., 2000. The effect of remanence anisotropy on paleointensity estimates: a case study from the Archean Stillwater Complex. Earth Planet. Sci. Lett., 183, 403–416.

    Article  Google Scholar 

  • Smirnov A.V. and Tarduno J.A., 2003. Paleointensity of the early geodynamo (2.45 Ga) as recorded in Karelia: a single crystal approach. Geology, 31, 415–418.

    Article  Google Scholar 

  • Smirnov A.V. and Tarduno J.A. 2004. Secular variation of the Late Archean — Early Proterozoic geodynamo. Geophys. Res. Lett., 31, L16607, DOI: 10.1029/2004GL020333.

    Article  Google Scholar 

  • Smirnov A.V. and Tarduno J.A., 2005. Thermochemical remanent magnetization in Precambrian rocks: Are we sure the geomagnetic field was weak? J. Geophys. Res., 110, B06103, DOI: 10.1029/2004JB003445.

    Article  Google Scholar 

  • Smirnov A.V., Tarduno J.A. and Evans D.A.D., 2011. Evolving core conditions ca. 2 billion years ago detected by paleosecular variation. Phys. Earth Planet. Inter., 187, 225–231.

    Article  Google Scholar 

  • Symons D.T.A., Lewchuk M.T., Dunlop D.J., Costanzo-Alvarez V., Halls H.C., Bates M.P., Palmer H.C. and Vandall T.A., 1994. Synopsis of paleomagnetic studies in the Kapuskasing structural zone. Can. J. Earth Sci., 31, 1206–1217.

    Article  Google Scholar 

  • Tanaka H., Kono M. and Uchimara H., 1995. Some global features of paleointensity in geologic time. Geophys. J. Int., 120, 97–102.

    Article  Google Scholar 

  • Tarduno J.A., Cottrell R.D. and Smirnov A.V., 2001. High geomagnetic field intensity during the mid-Cretaceous from Thellier analyses of single plagioclase crystals. Science, 291, 1779–1783.

    Article  Google Scholar 

  • Tarduno J.A. and Smirnov A.V., 2004. The paradox of low field values and the long-term history of the geodynamo. In: Channell J.E.T., Kent D.V., Lowrie W. and Meert J.G. (Eds.), Timescale of the Paleomagnetic Field. AGU Geophysical Monograph 145, 75–84.

    Chapter  Google Scholar 

  • Tarduno J.A., Cottrell R.D., Watkeys M.K. and Bauch D., 2007. Geomagnetic field strength 3.2 billion years ago recorded by single silicate crystals. Nature, 446, 657–660.

    Article  Google Scholar 

  • Tarduno J.A., Cottrell R.D., Watkeys M.K., Hofmann A., Doubrovine P.V., Mamajek E., Liu D., Sibeck D.G., Neukirch L.P. and Usui Y., 2010. Geodynamo, solar wind and magnetopause 3.45 billion years ago. Science, 327, 1238–1240.

    Article  Google Scholar 

  • Tauxe L., Mullender T.A.T. and Pick T., 1996. Potbellies, wasp-waists and superparamagnetism in magnetic hysteresis. J. Geophys. Res., 101, 571–583.

    Article  Google Scholar 

  • Tauxe L. and Yamazaki T., 2007. Paleointensities. In: Kono M. (Ed.), Schubert G. (Ed.), Treatise on Geophysics 5, Geomagnetism (Editor-in-Chief Schubert G.). Elsevier Ltd., Oxford, U.K., 509–564.

    Google Scholar 

  • Tauxe L. and Kodama K.P. 2009. Paleosecular variation models for ancient times: clues from Keweenawan lava flows. Phys. Earth Planet. Inter., 177, 31–45.

    Article  Google Scholar 

  • Thellier E. and Thellier O., 1959. Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique. Annales Géophysique, 15, 285–378.

    Google Scholar 

  • Verwey E.J.W., 1939. Electronic conduction of magnetite (Fe3O4) and its transition point at lowtemperature. Nature, 144, 327–328.

    Article  Google Scholar 

  • White W.S., Cornwall H.R. and Swanson R.W., 1951. Bedrock geology of the Ahmeek Quadrangle, Michigan. Geologic Quadrangle Map GQ-27, U.S. Geological Survey.

    Google Scholar 

  • Wilson R.L and Watkins N.D., 1967. Correlation of magnetic polarity and petrological properties in Columbia Plateau Basalts. Geophys. J. Roy. Astr. Soc., 12, 405–429.

    Article  Google Scholar 

  • Winklhofer M., Fabian K. and Heider F., 1997. Magnetic blocking temperatures of magnetite calculated with a three-dimensional micromagnetic model. J. Geophys. Res., 102, 22695–22709.

    Article  Google Scholar 

  • Winklhofer M. and Zimanyi G.T., 2006. Extracting the intrinsic switching field distribution in perpendicular media: A comparative approach. J. Appl. Phys., 99, 08E710, DOI: 10.1063/1.2176598.

    Article  Google Scholar 

  • Xu S. and Dunlop D.J., 2004. Thellier paleointensity theory and experiments for multidomain grains. J. Geophys. Res., 109, B07103, DOI: 10.1029/2004JB003024.

    Article  Google Scholar 

  • Yoshihara A. and Hamano Y., 2004. Paleomagnetic constraints on the Archean geomagnetic field intensity obtained from komatiites of the Barberton and Belingwe greenstone belts, South Africa and Zimbabwe. Precambrian Res., 131, 111–142.

    Article  Google Scholar 

  • Yu Y. and Dunlop D.J., 2001. Paleointensity determination on the late Precambrian Tudor Gabbro, Ontario. J. Geophys. Res., 106, 26331–26343.

    Article  Google Scholar 

  • Yu Y. and Dunlop D.J., 2002. Multivectorial paleointensity determination from the Cordova Gabbro, southern Ontario. Earth Planet. Sci. Lett., 203, 983–998.

    Article  Google Scholar 

  • Yu Y. and Dunlop D.J., 2004. Intensity and polarity of the geomagnetic field during Precambrian time. In: Channell J.E.T., Kent D.V., Lowrie W. and Meert J.G. (Eds.), Timescale of the Paleomagnetic Field. AGU Geophysical Monograph 145, 85–100.

    Google Scholar 

  • Yu Y., 2011. Importance of cooling rate dependence of thermoremanence in paleointensity determination. J. Geophys. Res., 116, B09101, DOI: 10.1029/2011JB008388

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeniy V. Kulakov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kulakov, E.V., Smirnov, A.V. & Diehl, J.F. Absolute geomagnetic paleointensity as recorded by ∼1.09 Ga Lake Shore Traps (Keweenaw Peninsula, Michigan). Stud Geophys Geod 57, 565–584 (2013). https://doi.org/10.1007/s11200-013-0606-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-013-0606-3

Keywords

  • Magnetite
  • Lava Flow
  • Natural Remanent Magnetization
  • Verwey Transition
  • Virtual Geomagnetic Polis