Separation of deterministic signals using independent component analysis (ICA)

Abstract

Independent Component Analysis (ICA) represents a higher-order statistical technique that is often used to separate mixtures of stochastic random signals into statistically independent sources. Its benefit is that it only relies on the information contained in the observations, i.e. no parametric a-priori models are prescribed to extract the source signals. The mathematical foundation of ICA, however, is rooted in the theory of random signals. This has led to questions whether the application of ICA to deterministic signals can be justified at all? In this context, the possibility of using ICA to separate deterministic signals such as complex sinusoidal cycles has been subjected to previous studies. In many geophysical and geodetic applications, however, understanding long-term trend in the presence of periodical components of an observed phenomenon is desirable. In this study, therefore, we extend the previous studies with mathematically proving that the ICA algorithm with diagonalizing the 4th order cumulant tensor, through the rotation of experimental orthogonal functions, will indeed perfectly separate an unknown mixture of trend and sinusoidal signals in the data, provided that the length of the data set is infinite. In other words, we justify the application of ICA to those deterministic signals that are most relevant in geodetic and geophysical applications.

This is a preview of subscription content, access via your institution.

References

  1. Botai O.J., 2011. Analysis of Geodetic Data and Model Simulated Data to Describe Nonstationary Moisture Fluctuations over Southern Africa. Ph.D. Thesis, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa (http://upetd.up.ac.za/thesis/available/etd-10212011-153344/unrestricted/00front.pdf).

    Google Scholar 

  2. Botai O.J., Combrinck L., Sivankumar V., Schuh H. and Böhm J., 2010. Extracting independent local oscillatory geophysical signals by geodetic tropospheric delay. In: D. Behrend and K.D. Baver (Eds.), International VLBI Service for Geodesy and Astrometry 2010 General Meeting Proceedings. NASA/CP-2010-215864, Greenbelt, MD, 345–354 (http://ivscc.gsfc.nasa.gov/publications/gm2010/botai).

  3. Cardoso J.F., 1999. High-order contrasts for independent component analysis. Neural Comput., 11, 157–192, DOI: 10.1162/089976699300016863.

    Article  Google Scholar 

  4. Cardoso J.F. and Souloumiac A., 1993. Blind beamforming for non-Gaussian signals. IEEE Proc. F, 140, 362–370, DOI: 10.1.1.8.5684.

    Google Scholar 

  5. Chatfield C., 1989. The Analysis of Time Series: An Introduction. Chapman and Hall, Boca Raton, 352 pp. ISBN-10: 1584883170.

    Google Scholar 

  6. Comon P., 1994. Independent component analysis, a new concept? Signal Process., 36, 287–314, DOI: 10.1016/0165-1684(94)90029-9.

    Article  Google Scholar 

  7. Forootan E. and Kusche J., 2012. Separation of global time-variable gravity signals into maximally independent components. J. Geodesy, 86, 477–497, DOI: 10.1007/s00190-011-0532-5.

    Article  Google Scholar 

  8. Forootan E., Awange J., Kusche J., Heck B. and Eicker A., 2012. Independent patterns of water mass anomalies over Australia from satellite data and models. Remote Sens. Environ., 124, 427–443, DOI: 0.1016/j.rse.2012.05.023.

    Article  Google Scholar 

  9. Frappart F., Ramillien G., Leblanc M., Tweed S.O., Bonnet M.P. and Maisongrande P., 2010a. An independent component analysis filtering approach for estimating continental hydrology in the GRACE gravity data. Remote Sens. Environ., 115, 187–204, DOI: 10.1016/j.rse.2010.08.017.

    Article  Google Scholar 

  10. Frappart F., Ramillien G., Maisongrande P. and Bonnet M.P., 2010b. Denoising satellite gravity signals by independent component analysis. IEEE Geosci. Remote Sens. Lett., 7, 421–425, DOI:10.1109/LGRS.2009.2037837.

    Article  Google Scholar 

  11. Hyvärinen A., 1999. On independent component analysis. Neural Comput. Surv., 2, 94–128.

    Google Scholar 

  12. Hyvärinen A. and Oja E., 2000. Independent component analysis: algorithms and applications. Neural Netw., 13, 411–430.

    Article  Google Scholar 

  13. Kirimoto T., Amishima T. and Okamura A., 2011. Separation of mixtures of complex sinusoidal signals with independent component analysis. IEICE Trans. Commun., 94-B, 215–221, DOI: 10.1587/transcom.E94.B.215.

    Article  Google Scholar 

  14. Koch K.R., 1988. Parameter Estimation and Hypothesis Testing in Linear Models. Springer, New York.

    Google Scholar 

  15. Kusche J., Rietbroek R. and Forootan E., 2010. Signal separation: the quest for independent mass flux patterns in geodetic observations. AGU Fall Meeting, 17 December 2010, San Francisco, USA (http://adsabs.harvard.edu/abs/2010AGUFM.G51C0683K).

  16. Mansour A. and Jutten C., 1995. 4th-order criteria for blind sources separation. IEEE Trans. Signal Process., 43, 2022–2025, DOI: 10.1109/78.403370.

    Article  Google Scholar 

  17. Nandi A.K. and Zarzoso V., 1996. Fourth-order cumulant based blind source separation. IEEE Signal Process. Lett., 3, 312–314, DOI: 10.1109/97.544786.

    Article  Google Scholar 

  18. Nikias C. and Petropulu AP., 1993. Higher-Order Spectra Analysis: A Nonlinear Signal Processing Framework. Prentice Hall, 528 pp., ISBN:9780136782100.

  19. Rietbroek R., Brunnabend S.E., Kusche J. and Schröter J., 2012. Resolving sea level contributions by identifying fingerprints in time-variable gravity and altimetry. J. Geodyn., 59–60, 72–81, DOI:10.1016/j.jog.2011.06.007.

    Article  Google Scholar 

  20. Swami A., Mendel J.M. and Nikias C.L., 1995. Higher-Order Spectral Analysis Toolbox. The MathWorks Inc., Natick, MA (http://www.uic.edu/classes/idsc/ids594/research/BBC/hosa.pdf).

    Google Scholar 

  21. Zarzoso V. and Nandi K., 1999. Blind separation of independent sources for virtually any source probability density function. IEEE Trans. Signal Process, 47, 2419–2432, DOI: 10.1109/78.782186.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ehsan Forootan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Forootan, E., Kusche, J. Separation of deterministic signals using independent component analysis (ICA). Stud Geophys Geod 57, 17–26 (2013). https://doi.org/10.1007/s11200-012-0718-1

Download citation

Keywords

  • ICA
  • separation of deterministic signals
  • 4th order cumulant