Skip to main content
Log in

Paleosecular variation and absolute geomagnetic paleointensity records retrieved from the Early Cretaceous Posadas Formation (Misiones, Argentina)

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The Early Cretaceous may be considered a key period for understanding the evolution of the Earth’s magnetic field. Some still unsolved problems are related to the mode of paleosecular variation (PSV) of the Earth’s magnetic field before and during the Cretaceous Normal Superchron. We report here a detailed rock-magnetic, paleomagnetic and paleointensity investigation from 28 lava flows (331 standard paleomagnetic cores) collected in the Argentinean part of the Parana Flood Basalts (Formation Posadas) in order to contribute to the study of PSV during the early Cretaceous and to obtain precise Cretaceous paleomagnetic pole positions for stable South America. The average paleofield direction is precisely determined from 26 sites, which show small within-site dispersion and high directional stability. Five sites show evidences for the self-reversal of thermoremanent magnetization. 23 sites yielded normal polarity magnetization and only 3 are reversely magnetized. Moving windows averages were used to analyze the sequential variation of virtual geomagnetic pole’s (VGP) axial positions. Interestingly, the axial average VGP path traces an almost complete cycle around the geographical pole and passes near the location of all previously published Paraná Magmatic Province poles. Both paleomagnetic poles and average VGP paths are significantly different from the pole position suggested by fixed hotspot reconstructions, which may be due to true polar wander or the hotspot motion itself. Only 15 samples from 5 individual basaltic lava flows, yielded acceptable paleointensity estimates. The site mean paleointensities range from 25.2 ± 2.2 to 44.0 ± 2.2 µT. The virtual dipole moments (VDMs) range from 4.8 to 9.9 × 1022 Am2. This correspond to a mean value of 7.7 ± 2.1 × 1022 Am2 which is 96% of the present day geomagnetic field strength. These intensities agree with the relatively high values already reported for Early Cretaceous, which are consistent with some inferences from computer simulations previously published.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alva-Valdivia L.M., Goguitchaichvili A., Urrutia-Fucugauchi J., Riisager J., Riisager P. and Ferreira-Lopes O., 2003. Paleomagnetic poles and paleosecular variation of basalts from Parana Magmatic Province, Brazil: geomagnetic and geodynamic implications. Phys. Earth Planet. Inter., 138, 183–196.

    Article  Google Scholar 

  • Biggin A.J., 2010. Are systematic differences between thermal and microwave Thellier-type palaeointensity estimates a consequence of multidomain bias in the thermal results? Phys. Earth Planet. Inter., 180, 16–40.

    Article  Google Scholar 

  • Biggin A.J., van Hinsbergen D.J., Langerais C.G, Straathof G.B. and Deenen M.H.L., 2008. Geomagnetic secular variation in the Cretaceous Normal Superchron and in the Jurassic. Phys. Earth Planet. Inter., 169, 3–19.

    Article  Google Scholar 

  • Bina M., Tanguy J.C., Hoffman V., Prévot M., Listanco E.L., Keller R., Fehr K.T., Goguitchaichvili A.T. and Punongbayan R.S., 1999. A detailed magnetic and mineralogical study of selfreversed dacitic pumices from the 1991 Pinatubo eruption (Philippines). Geophys. J. Int., 138, 159–178.

    Article  Google Scholar 

  • Cande S.C. and Kent D.V., 1995. Revised calibration of the geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. J. Geophys. Res., 100, 6093–6095.

    Article  Google Scholar 

  • Coe R., Grommé S. and Mankinen E.A., 1978. Geomagnetic paleointensities from radiocarbondated lava flows on Hawaii and the question of the Pacific nondipole low. J. Geophys. Res., 83, 1740–1756.

    Article  Google Scholar 

  • Courtillot V. and Besse J., 1987. Magnetic field reversals, polar wander, and core-mantle coupling. Science, 237, 1140–1147.

    Article  Google Scholar 

  • Cox A., 1969. Research note: Confidence limits for the precision parameter, K. Geophys. J. R. Astron. Soc., 17, 545–549.

    Google Scholar 

  • Cox A., 1970. Latitude dependence of the angular dispersion of the geomagnetic field. Geophys. J. R. Astron. Soc., 20, 253–269.

    Google Scholar 

  • Day R., Fuller M.D. and Schmidt V.A., 1977. Hysteresis properties of titanomagnetites: grain size and composition dependence. Phys. Earth Planet. Inter., 13, 260–267.

    Article  Google Scholar 

  • Doubrovine P.V. and Tarduno J.A., 2004. Self-reversed magnetization carried by titanomaghemite in oceanic basalts. Earth Planet. Sci. Lett., 222, 959–969.

    Article  Google Scholar 

  • Dunlop D.J., 2002. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc), Theoretical curves and tests using titanomagnetite data. J. Geophys. Res., 107, DOI: 10.1029 /2001JB000486.

  • Dunlop D.J. and Özdemir O., 1997. Rock Magnetism, Fundamentals and Frontiers. Cambridge University Press, Cambridge, U.K., 573 pp.

    Book  Google Scholar 

  • Ernesto M., Pacca I.G., Hyodo F.Y. and Nardy A.J.R., 1990. Paleomagnetism of the Mesozoic Serra Geral formation, southern Brazil. Phys. Earth Planet. Inter., 64, 153–175.

    Article  Google Scholar 

  • Ernesto M., Comin-Chiaramonti P., Gomes C.B., Castillo A.M. and Velazquez J.C., 1996. Palaeomagnetic data from the Central Alkaline Province, Eastern Paraguay. In: Gomes C.B. and Comin-Chiaramonti P. (Eds.), Alkaline Magmatism in Central-Eastern Paraguay. EDUSP/FAPESP, Sao Paulo, Brazil, 85–102.

    Google Scholar 

  • Ernesto M., Raposo I.B., Marques L., Renne P., Diogo L. and Min M., 1999. Paleomagnetism, geochemistry and 40Ar/39Ar dating of the Northeastern Paraná Magmatic Province. J. Geodyn., 28, 321–340.

    Article  Google Scholar 

  • Evans M.E. and Heller F., 2003. Environmental Magnetism. Principles and applications of Environmagnetics. Academic Press, Elsevier Science, 300 pp.

  • Fisher N.I., Lewis T and Embleton B.J.J., 1987. Statistical Analysis of Spherical Data. Cambridge University Press, Cambridge, U.K., 330 pp.

    Book  Google Scholar 

  • Gentili C. and Rimoldi H., 1980. Mesopotamia. Segundo Simposio de Geología Regional Argentina, Córdoba, Vol.1. Academia Nacional de Ciencias, Cordoba, Argentina, 185–223.

    Google Scholar 

  • Geuna S.E. and Vizán H., 1998. New Early Cretaceous paleomagnetic pole from Córdoba province, (Argentine): revision of previous studies and implications for the South American database. Geophys. J. Int., 135, 1085–1100.

    Article  Google Scholar 

  • Geuna S.E, Somoza R., Vizán H., Figari E.G. and Rinaldi C.A., 2000. Paleomagnetism of Jurassic and Cretaceous rocks in Central Patagonia: a key to constrain the timing of rotations during the breakup of southwestern Gondwana? Earth Planet. Sci. Lett., 181, 145–160.

    Article  Google Scholar 

  • Glatzmaier G.A. and Roberts P.H., 1995. A three-dimensional self-consistent computer simulation of the geomagnetic field reversal. Nature, 377, 203–209.

    Article  Google Scholar 

  • Glatzmaier G.A., Coe R.S., Hongre L. and Roberts P.H., 1999. The role of the Earth’s mantle in controlling the frequency of geomagnetic reversals. Nature, 401, 885–890.

    Article  Google Scholar 

  • Goguitchaichvili A. and Prévot M., 2000. Magnetism of oriented single crystals of hemoilmenite with selfreversed thermoremanent magnetization. J. Geophys. Res., 105, 2761–2780.

    Article  Google Scholar 

  • Goguitchaichvili A., Prévot M., Roberts N. and Thompson J., 1999. An attempt to determine the absolute geomagnetic field intensity in Southwestern Iceland during the Gauss-Matyama reversal. Phys. Earth Planet. Inter., 115, 53–66.

    Article  Google Scholar 

  • Goguitchaichvili A., Chauvin A., Roperch P., Prévot M., Aguirre L. and Vergara M., 2000. Palaeomagnetism of the Miocene Farellones formation (Chile). Geophys. J. Int., 140, 357–373.

    Article  Google Scholar 

  • Goguitchaichvili A., Alva-Valdivia L., Urrutia-Fucugauchi J., Morales J. and Ferreira-Lopes O., 2002. On the reliability of Mesozoic dipole low: new absolute paleointensity results from Parana Flood Basalts (Brazil). Geophys. Res. Lett., 29, 1655, DOI: 10.1029/2002GL015242.

    Article  Google Scholar 

  • Goguitchaichvili A., Cejudo Ruiz R., Sanchez Bettucci L., Aguilar Reyes B., Alva-Valdivia L.M., Urrutia-Fucugauchi J., Morales J. and Calvo Rathert M., 2008. New absolute paleointensity results from the Parana Magmatic Province (Uruguay) and the Early Cretaceous geomagnetic paleofield. Geochem. Geophys. Geosyst., 9, Q11008, DOI: 10.1029/2008GC002102.

    Article  Google Scholar 

  • Granot R., Tauxe L., Gee J.S. and Ron H.A., 2007. View into the Cretaceous geomagnetic field from analysis of gabbros and submarine glasses. Earth Planet. Sci. Lett., 256, 1–11.

    Article  Google Scholar 

  • Gubbins D., 1994. Geomagnetic polarity reversals: a connection with secular variation and coremantle interaction? Rev. Geophys., 32, 61–83.

    Article  Google Scholar 

  • Heider F. and Dunlop D.J., 1987. Two types of chemical remanent magnetizations during oxidation of magnetite. Phys. Earth Planet. Inter., 46, 24–45.

    Article  Google Scholar 

  • Heller R., Merril R.T. and McFadden P.L., 2002. The variation of Earth’s magnetic field with time. Phys. Earth Planet. Inter., 131, 237–249.

    Article  Google Scholar 

  • Hide R., 1967. Motions of the Earth’s core and mantle, and variation of the main geomagnetic field. Science, 157, 55–56.

    Article  Google Scholar 

  • Johnson C.L., Constable C.G., Tauxe L., Barendregt R., Brown L.L., Coe R.S., Layer P., Mejia V., Opdyke N.D., Singer B.S., Staudigel H. and Stone D.B., 2008. Recent investigations of the 0–5 Ma geomagnetic field recorded by lava flows. Geochem. Geophys. Geosyst., 9, Q04032.

    Article  Google Scholar 

  • Kirschvink J.L., 1980. The least-square line and plane and analysis of palaeomagnetic data. Geophys. J. R. Astron. Soc., 62, 699–718.

    Google Scholar 

  • Kosterov A. and Prévot M., 1998. Possible mechanisms causing failure of Thellier paleointensity experiments: results of rock magnetic study of the Lesotho basalt, Southern Africa. Geophys. J. Int., 134, 554–572

    Article  Google Scholar 

  • Larson R.L. and Olson P., 1991. Mantle plumes control magnetic reversal frequency. Earth Planet. Sci. Lett., 107, 437–447.

    Article  Google Scholar 

  • McEllhinny M.W and McFadden P.L., 1997. Paleosecular variation over the past 5 Myr based on a new generalized database. Geophys. J. Int., 131, 240–252.

    Article  Google Scholar 

  • McFadden P.L. and Lowes F.J., 1981. The discrimination of mean directions drawn from Fisher distributions. Geophys. J. R. Astron. Soc., 67, 19–33.

    Google Scholar 

  • McFadden P.L. and McElhinny M.W., 1990. Classification of the reversal test in paleomagnetism. Geophys. J. Int., 103, 725–729.

    Article  Google Scholar 

  • McFadden P.L. and Merrill R.T., 1997. Asymmetry in the reversal rate before and after the Cretaceous normal polarity superchron. Earth Planet. Sci. Lett., 149, 43–47.

    Article  Google Scholar 

  • McFadden P.L., Merrill R.T. and McElhinny M.W, 1988. Dipole-Quadrupole family modeling of paleosecular variation. J. Geophys. Res., 93, 11583–11588.

    Article  Google Scholar 

  • Mena M., Orgeira M.J. and Lagorio S., 2006. Paleomagnetism, rockmagnetism and geochemical aspects of early Cretaceous basalts of the Paraná Magmatic Province, from Misiones, Argentina. Earth Planets Space, 58, 1283–1293.

    Google Scholar 

  • Muller R.D., Royer J.Y. and Lawver L.A., 1993. Revised plate motions relative to the hotspots from combined Atlantic and Indean Ocean hotspot tracks. Geology, 21, 275–278.

    Article  Google Scholar 

  • Nagata T., Arai Y. and Momose K., 1963. Secular variation of the geomagnetic total force during the last 5000 years. J. Geophys. Res., 68, 5277–5281.

    Google Scholar 

  • Néel L., 1955. Some theoretical aspects of rock-magnetism. Adv. Phys., 4, 191–243.

    Article  Google Scholar 

  • Nishitani T. and Kono M., 1989. Effects of low-temperatures oxidation on the remanence properties of titanomagnetites. J. Geomagn. Geoelectr., 41, 19–38.

    Google Scholar 

  • Özdemir Ö., 1987. Inversion of titanomaghemites. Phys. Earth Planet. Inter., 46, 184–196.

    Article  Google Scholar 

  • Özdemir Ö. and Dunlop D.J., 1989. Chemico-viscous remanent magnetization in the Fe3O4−yFe2O3 system. Science, 243, 1043–1047.

    Article  Google Scholar 

  • Piccirillo E.M. and Melfi A.J. (Eds.), 1988. The Mesozoic Flood Volcanism from the Paraná Basin (Brazil): Petrogenetic and Geophysical Aspects. Univ. de Sao Paulo, Sao Paulo, Brazil.

    Google Scholar 

  • Prévot M., Mainkinen R.S., Grommé S. and Lecaille A., 1983. High paleointensity of the geomagnetic field from thermomagnetic studies on rift valley pillow basalts from the middle Atlantic ridge. J. Geophys. Res., 88, 2316–2326.

    Article  Google Scholar 

  • Prévot M., Derder M., McWilliams M.M. and Thompson J., 1990. Intensity of the Earth’s magnetic field: evidence for a Mesozoic dipole low. Earth Planet. Sci. Lett., 97, 129–139.

    Article  Google Scholar 

  • Raposo M.I.B. and Ernesto M., 1995. An Early Cretaceous paleomagnetic pole from Ponta Grossa dikes (Brazil): Implications for the South American Mesozoic apparent polar wander path. J. Geophys. Res., 100(B10), 20095–20109.

    Article  Google Scholar 

  • Raposo M.I.B., Ernesto M. and Renne P.R., 1998. Paleomagnetism and 40Ar/39Ar dating of the early Cretaceous Florianópolis dike swarm (Santa Catarina Island), Southern Brazil. Phys. Earth Planet. Inter., 108, 275–290.

    Article  Google Scholar 

  • Readman P. and O’Reilly W., 1972. The synthesis and inversion of nonstoichiometric titanomagnetites. Phys. Earth Planet. Inter., 4, 121–128.

    Article  Google Scholar 

  • Renne P., Ernesto M., Pacca I., Coe R.S., Glen J.M., Prévot M. and Perrin M., 1992. The age of Paraná flood volcanism, rifting of Gondwanaland, and Jurassic-cretaceous boundary. Science, 258, 975–979.

    Article  Google Scholar 

  • Renne P., Glen J.M., Milner S.C. and Duncan A.R., 1996. Age of Etendeka flood volcanism and associated intrusions in southwestern Africa. Geology, 24, 659–662.

    Article  Google Scholar 

  • Riisager P., Riisager J., Abrahamsen N. and Waagstein R., 2002. Thellier palaeointensity experiments on Faroes flood basalts: technical aspects and geomagnetic implications. Phys. Earth Planet. Inter., 131, 91–100.

    Article  Google Scholar 

  • Solano M.C., Goguitchaichvili A., Sánchez Bettucci L., Cejudo Ruiz R., Calvo-Rathert M., Ruiz-Martinez V.C., Soto R. and Alva-Valdivia L.M., 2010. Paleomagnetism of Early Cretaceous Arapey Formation (Northern Uruguay). Stud. Geophys. Geod., 54, 533–546.

    Article  Google Scholar 

  • Somoza R. and Zaffarana C., 2008. Mid-Cretaceous polar standstill of South America, motion of the Atlantic hotspots and the birth of the Andean cordillera. Earth Planet. Sci. Lett., 271, 267–277.

    Article  Google Scholar 

  • Somoza R., Vizán H. and Taylor G.K., 2005. Rotaciones tectónicas en el Macizo del Deseado durante el desmembramiento de Gondwana. 16° Congreso Geológico Argentino, Actas 1. Asoc. Geol. Arg., La Plata, Argentina, 403–410.

    Google Scholar 

  • Tauxe L. and Staudigel H., 2004, Strength of the geomagnetic field in the Cretaceous Normal Superchron: New data from submarine basaltic glass of the Troodos Ophiolite. Geochem. Geophys. Geosyst., 5, Q02H06, DOI: 10.1029/2003GC000635.

    Article  Google Scholar 

  • Tauxe L., Mullender T.A.T. and Pick. T., 1996. Potbellies, wasp-waists, and super-paramagnetism in magnetic hysteresis. J. Geophys. Res., 101, 571–583.

    Article  Google Scholar 

  • Tarduno J.A., Cottrell R.D. and Smirnov A.V., 2001. High geomagnetic intensity during the Mid-Cretaceous from Thellier analyses of single plagioclase crystals. Science, 291, 1779–1783.

    Article  Google Scholar 

  • Tarduno J.A., Cottrell R.D. and Smirnov A.V., 2002. The Cretaceous superchron geodynamo: observations near the tangent cylinder. Proc. Natl. Acad. Sci. U. S. A., 99, 14020–14025.

    Article  Google Scholar 

  • Thellier E. and Thellier O., 1944. Recherches géomagnetiques sur les coulees volcaniques d’Auvergne: Ann. Géophys., 1, 37–52.

    Google Scholar 

  • Thellier E. and Thellier O., 1959. Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique. Ann. Géophys., 15, 285–376.

    Google Scholar 

  • Turner S., Regelous M., Kelley S., Hawkesworth C.J. and Mantovani M.M.S., 1994. Magmatism and continental break-up in the South Atlantic: high precision 40Ar-39Ar geochronology. Earth Planet. Sci. Lett., 121, 333–348.

    Article  Google Scholar 

  • Valet J.-P. and Herrero-Bervera E., 2000. Paleointensity experiments using alternating field demagnetization. Earth Planet. Sci. Lett., 177, 43–53.

    Article  Google Scholar 

  • Xu T.C., Tarling D.H., Eustance N.B. and Hijab B.R., 1986. Short term viscous effects on measurements of remanence. Geophys. J. R. Astron. Soc., 87, 305–309.

    Google Scholar 

  • Zijderveld J.D., 1967. A.C. Demagnetization in rocks: analysis of results. In: Collinson D.W., Creer K.M. and Runcorn S.K. (Eds.), Methods in Paleomagnetism. Elsevier, New York, 254–286.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mabel Mena.

Additional information

Continuation of LATINMAG Special Issue #4, Stud. Geophys. Geod., 54 (2010)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mena, M., Goguitchaichvili, A., Solano, M.C. et al. Paleosecular variation and absolute geomagnetic paleointensity records retrieved from the Early Cretaceous Posadas Formation (Misiones, Argentina). Stud Geophys Geod 55, 279–309 (2011). https://doi.org/10.1007/s11200-011-0016-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-011-0016-3

Keywords

Navigation