Skip to main content
Log in

New magnetic mineralogy and archaeointensity results from greek kilns and baked clays

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Seven archaeological sites in Northern Greece and a pottery assemblage from Ithaki Island (Ionian Sea) have provided material from kilns and a collection of baked clays. The whole dataset consists of 69 samples and covers a period of almost 4000 years. Although the majority of the samples was oriented, only few directions could be obtained, mostly due to small sample size and fragility. Detailed rock magnetic experiments identified magnetite/titano-magnetite and substituted magnetite as the main magnetic minerals. Variable amounts of haematite were detected in some cases. In three out of eight sites, multi-domain grains prevail, whereas single-, pseudo-single domain or mixtures are detected in the remaining five. The classical Thellier-Thellier palaeointensity method was applied to 94 specimens. Following stringent acceptance criteria, 66 results from the 8 sites were considered successful and retained. These new results show a convergence with regional and global compilations and improve the knowledge of the past geomagnetic field behaviour in Greece.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aidona E., Kondopoulou D., Alexandrou M. and Ioannidis N., 2010. Archaeomagnetic studies in kilns from N. Greece. Bulletin of the Geological Society of Greece, XLIII(4), 1888–1897.

    Google Scholar 

  • Aitken M.J., Alcock P.A., Bussell G.D. and Shaw C.J., 1981. Archaeomagnetic determination of the past geomagnetic intensity using ancient ceramics: allowance for anisotropy. Archaeometry, 23, Part 1, 53–64.

    Article  Google Scholar 

  • Aitken M.J., Allsop A.L., Bussell G.D., Liritzis Y. and Winter M.B. 1989a. Geomagnetic intensity measurements using bricks from Greek churches of the first and second millennia A.D. Archaeometry, 31, 77–87.

    Article  Google Scholar 

  • Aitken M.J., Allsop A.L., Bussell G.D. and Winter M.B. 1989b. Geomagnetic intensity variation during the last 4000 years. Phys. Earth Planet. Inter., 56, 49–58.

    Article  Google Scholar 

  • Chauvin A., Garcia Y., Lanos Ph. and Laubenheimer F., 2000. Palaeointensity of the geomagnetic field recovered on archaeomagnetic sites from France. Phys. Earth Planet. Inter., 120, 111–136.

    Article  Google Scholar 

  • Coe R., 1967. Paleointensities of the Earth’s magnetic field determined from Tertiary and Quaternary rocks. J. Geophys. Res., 72, 3247–3262.

    Article  Google Scholar 

  • Coe R.S., Grommé S. and Mankinen E.A., 1978. Geomagnetic paleointensities from radiocarbondated lava flows on Hawaii and the question of the Pacific nondipole low. J. Geophys. Res., 83, 1740–1756.

    Article  Google Scholar 

  • Cui Y.L. and Verosub K., 1995. A mineral magnetic study of some pottery samples: possible implications for sample selection in archaeointensity studies. Phys. Earth Planet. Inter., 91, 261–271.

    Article  Google Scholar 

  • Cui Y.L., Verosub K., Roberts A. and Kovacheva M., 1997. Rock magnetic studies of archaeological samples: implications for sample selection for palaeointensity determinations. J. Geomagn. Geoelectr., 49, 567–585.

    Google Scholar 

  • DeMarco E., 2007. Complete Magnetic and Archaeomagnetic Measurements in Archaeological Sites: Contribution to the SVC for Greece. PhD Thesis, Aristotle University of Thessaloniki, Thessaloniki, 293 pp..

    Google Scholar 

  • DeMarco E., Spatharas V., Gomez-Paccard M., Chauvin A. and Kondopoulou D., 2008. New archaeointensity results from archaeological sites and variation of the geomagnetic field intensity for the last 7 millennia in Greece. Phys. Chem. Earth, 33, 578–595, DOI: 10.1016/j.pce.2008.02.025.

    Google Scholar 

  • Donadini F., Korte M. and Constable C.G., 2009. Geomagnetic field for 0-3ka: 1. New data sets for global modeling. Geochem. Geophys. Geosyst., 10, Q06007, DOI: 10.1029/200GC002295.

    Article  Google Scholar 

  • Downey W.S. and Tarling D.H., 1984. Archaeomagnetic dating of Santorini volcanic eruptions and fired destruction levels of Late Minoan civilization. Nature, 309, 519–523.

    Article  Google Scholar 

  • Downey W.S. and Tarling D.H., 1985. Archaeomagnetic dating of Santorini volcanic eruptions and fired destruction levels in Crete (reply). Nature, 313, 75–76.

    Article  Google Scholar 

  • Fabian K., 2001. A theoretical treatment of paleointensity determination experiments on rocks containing pseudo-single or multi domain magnetic particles. Earth Planet. Sci. Lett., 188, 45–58.

    Article  Google Scholar 

  • Fabian K., 2003. Statistical theory of weak field thermoremanent magnetisation in multidomain particle ensembles. Geophys. J. Int., 155, 479–488.

    Article  Google Scholar 

  • Genevey A. and Gallet Y., 2002. Intensity of the geomagnetic field in western Europe over the past 2000 years: new data from ancient French pottery. J. Geophys. Res., 107(B11), 1–18, DOI: 10.1029/2001JB000701.

    Article  Google Scholar 

  • Genevey A., Gallet Y., Constable C.G., Korte M. and Hulot G., 2008. ArcheoInt: An upgraded compilation of geomagnetic field intensity data for the past ten millennia and its application to the recovery of the past dipole moment. Geochem. Geophys. Geosyst., 9, Q04038, DOI: 10.1029/2007GC001881.

    Article  Google Scholar 

  • Halgedhal S., Day R. and Fuller M., 1980. The effect of the cooling rate on the intensity of weak field TRM in single domain magnetite. J. Geophys. Res., 85, 3690–3698.

    Article  Google Scholar 

  • Hongre L., Hulot G. and Khokhlov A., 1998. An analysis of the geomagnetic field over the past 2000 years. Phys. Earth Plant. Inter., 106, 311–335.

    Article  Google Scholar 

  • Jelínek V., 1977. The Statistical Theory of Measuring Anisotropy of Magnetic Susceptibility of Rocks and Its Applications. Geofyzika, Brno, Czech Republic.

    Google Scholar 

  • Jordanova N., Karloukovski V. and Spatharas V., 1995. Magnetic anisotropy studies on Greek pottery and bricks. Bulgarian Geophysics Journal, 21(4), 49–58.

    Google Scholar 

  • Jordanova N., Petrovský E. and Kovacheva M., 1997. Preliminary rock magnetic study of archaeomagnetic samples from Bulgarian sites of B.C. time. J. Geomagn. Geoelectr., 49, 543–566.

    Google Scholar 

  • Jordanova N., Petrovský E., Kovacheva M. and Jordanova D., 2001. Factors determining magnetic enhancement of burnt clay from archaeological sites. J. Archaeol. Sci., 28, 1137–1148.

    Article  Google Scholar 

  • Jordanova N., Kovacheva M., Hedley I. and Kostadinova M., 2003. On the suitability of baked clay for archaeomagnetic studies as deduced from detailed rock-magnetic studies. Geophys. J. Int., 153, 146–158.

    Article  Google Scholar 

  • Korte M. and Constable C.G., 2005. Continuous geomagnetic field models for the past 7 millenia: 2. CALS7K. Geochem. Geophys. Geosyst., 6, DOI: 10.1029/2004GC000801.

  • Korte M., Donadini F. and Constable C.G., 2009. Geomagnetic field for 0–3 ka: 2. Revised global time-varying models. Geochem. Geophys. Geosyst., 10, Q06008, DOI: 10.1029/2008GC002297.

    Article  Google Scholar 

  • Kovacheva M. and Kanarchev M., 1986. Revised arhaeointensity data from Bulgaria. J. Geomagn. Geoelectr., 38, 1297–1310.

    Google Scholar 

  • Kovacheva M. and Toshkov A., 1994. Geomagnetic field variations as determined from Bulgarian archaeomagnetic data. Part I: the last 2000 years A.D. Surv. Geophys., 15, 673–701.

    Article  Google Scholar 

  • Kovacheva M., Spatharas V. and Liritzis Y., 2000. New archaeointensity results from Greek materials. Archaeometry, 42, 415–429.

    Article  Google Scholar 

  • Kovacheva M., Boyadziev Y., Kostadinova-Avramova M., Jordanova N. and Donadini F., 2009a. Updated archaeomagnetic data set of the past 8 millennia from the Sofia laboratory, Bulgaria. Geochem. Geophys. Geosyst., 10, Q05002, DOI: 10.1029/2008GC002347.

    Article  Google Scholar 

  • Kovacheva M., Chauvin A., Jordanova N., Lanos Ph. and Karloukovski V., 2009b. Remanence anisotropy effect on the palaeointensity results obtained from various archaeological materials, excluding pottery. Earth Planets Space, 61, 711–723.

    Google Scholar 

  • Lanos Ph., Le Goff M., Kovacheva M. and Schnepp E., 2005. Hierarchical modelling of archaeomagnetic data and curve estimation by moving average technique. Geophys. J. Int., 160, 440–476.

    Article  Google Scholar 

  • Levi S., 1977. The effect of magnetite particle size on paleointensity determinations of the geomagnetic field. Phys. Earth Planet. Inter., 13, 245–259.

    Article  Google Scholar 

  • Liritzis Y. and Thomas R., 1980. Palaeointensity and thermoluminiscence measurements on Cretan kilns from 1300 to 2000 B.C. Nature, 283, 54–55.

    Article  Google Scholar 

  • Liritzis Y., 1989. Greek archaeointensities; some aspects of reliability and geophysical implications. Earth Moon Planets, 47, 1–13.

    Article  Google Scholar 

  • Lodge A. and Holme R., 2008. Towards a new approach to archaeomagnetic dating in Europe using geomagnetic field modelling. Archaeometry, 50, 309–322, DOI: 10.1111/j.1475-4754.2008.00400.x.

    Google Scholar 

  • Lowrie W. and Fuller M., 1971. On the alternating field demagnetization characteristics of multidomain thermoremanent magnetization in magnetite. J. Geophys. Res., 76, 266339–266349.

    Article  Google Scholar 

  • Lowrie W., 1990. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophys. Res. Lett., 17, 159–162.

    Article  Google Scholar 

  • Nagata T., Arai Y. and Momose K., 1963. Secular variation of the geomagnetic total force during the last 5000 years. J. Geophys. Res., 68, 5277–5281.

    Google Scholar 

  • O’Reilly W., 1984. Rock and Mineral Magnetism. Chapman and Hall, New York.

    Google Scholar 

  • Papamarinopoulos S., 1987. Geomagnetic intensity measurements from Byzantine vases in the period between 300 and 1650 yr. A.D. J. Geomagn. Geolectr., 39, 261–270.

    Google Scholar 

  • Pavón-Carrasco F.J., Osete M.L., Torta J.M. and Gaya-Piqué L.R., 2009. A regional archaeomagnetic model for Europe for the last 3000 years, SCHA.DIF.3K: Applications to archaeomagnetic dating. Geochem. Geophys. Geosyst., 10, Q03013, DOI: 10.1029/2008GC002244.

    Article  Google Scholar 

  • Stephenson A., Sadikun S. and Porter D.K., 1986. A theoretical and experimental comparison of the anisotropies of magnetic susceptibility and remanence in rocks and minerals. Geophys. J. R. Astron. Soc., 84, 185–200.

    Google Scholar 

  • Stober J.C. and Thompson R., 1979. An investigation into the source of magnetic minerals in some Finnish lake sediments. Earth Planet. Sci. Lett., 45, 464–474.

    Article  Google Scholar 

  • Spatharas V., Kondopoulou D., Liritzis I. and Tsokas G.N., 2000. Archaeointensity results from two ceramic kilns from N. Greece. J. Balkan Geophys. Soc., 4, 67–72.

    Google Scholar 

  • Spatharas V., Kondopoulou D. and Eftimiadis K., 2003. Archaeomagnetic dating of archaeological sites in Greece. Proceedings of the 7th European Meeting on Ancient Ceramics (EMAC’03). October 27–31, Lisbon, Portugal.

  • Spatharas V., 2005. Archeomagnetic and Magnetic Measurements in Archaeological Materials in Macedonia and Thrace (N. Greece). PhD Thesis, Aristotle University of Thessaloniki, Thessaloniki, Greece, 179 pp. (in Greek).

    Google Scholar 

  • Tarling D.H., Kondopoulou D. and Spatharas V., 2004. An archaeomagnetic study of the LM IB Kilns. In: Soles J.S. and Davaras C. (Eds.), Mochlos IC — Period III. Neopalatial Settlement on the Coast: The Artisans’ Quarter and the Farmhouse at Chalinomouri. The Small Finds. Prehistory Monographs, 9, INSTAP Academic Press, Philadelphia, Pennsylvania.

    Google Scholar 

  • Thomas R.C., 1981. Archaeomagnetism of Greek Pottery and Cretan Kilns. PhD Thesis. Edinburgh University, Edinburgh, U.K.

    Google Scholar 

  • Thellier E. and Thellier O., 1959. Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique. Annales de Géophysique, 15, Fasc. 3 (in French).

  • Veitch R.J., Hedley I.G. and Wagner J.J., 1984. An investigation of the intensity of the geomagnetic field during roman times using magnetically anisotropic bricks and tiles. Arch. Sc. Genève, 37, Fasc. 3, 359–373.

    Google Scholar 

  • Walton D., 1984. Re-evaluation of Greek archaeomagnitudes. Nature, 310, 740–743.

    Article  Google Scholar 

  • Walton D., 1986. Alteration and its effects on the reproducibility of archaeomagnitudes from Tel-El-Amarna. J. Geomagn. Geoelectr., 38, 1349–1352.

    Google Scholar 

  • Walton D. and Balhatchet H., 1988. Application of a new technique to Greek archaeomagnitudes. J. Geomagn. Geoelectr., 40, 1503–1510.

    Google Scholar 

  • Xanthakis J. and Liritzis Y., 1991. Geomagnetic field variations as inferred from archaeomagnetism in Greece and palaeomagnetism in British Lake sediments since 7000 B.C. Publ. Acad. Athens, Athens, Greece, 218 pp.

  • Zacharias N., 2000. New Techniques on Age Estimation of Ceramic and Calcite Materials Using the Thermoluminescence Dating Method. Ph.D. Thesis, National Technical University of Athens, Athens, Greece, 174 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassileios Spatharas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spatharas, V., Kondopoulou, D., Aidona, E. et al. New magnetic mineralogy and archaeointensity results from greek kilns and baked clays. Stud Geophys Geod 55, 131–157 (2011). https://doi.org/10.1007/s11200-011-0008-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-011-0008-3

Keywords

Navigation