Skip to main content
Log in

Highly-reduced dynamic orbits and their use for global gravity field recovery: A simulation study for GOCE

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The so-called highly reduced-dynamic (HRD) orbit determination strategy and its use for the determination of the Earth’s gravitational field are analyzed. We discuss the functional model for the generation of HRD orbits, which are a compromise of the two extreme cases of dynamic and purely geometrically determined kinematic orbits. For gravity field recovery the energy integral approach is applied, which is based on the law of energy conservation in a closed system. The potential of HRD orbits for gravity field determination is studied in the frame of a simulated test environment based on a realistic GOCE orbit configuration. The results are analyzed, assessed, and compared with the respective reference solutions based on a kinematic orbit scenario. The main advantage of HRD orbits is the fact that they contain orbit velocity information, thus avoiding numerical differentiation on the orbit positions. The error characteristics are usually much smoother, and the computation of gravity field solutions is more efficient, because less densely sampled orbit information is sufficient. On the other hand, the main drawback of HRD orbits is that they contain external gravity field information, and thus yield the danger to obtain gravity field results which are biased towards this prior information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Badura T., 2006. Gravity Field Analysis from Satellite Orbit Information applying the Energy Integral Approach. PhD Thesis, Graz University of Technology, Graz, Austria.

    Google Scholar 

  • Badura T., Sakulin C., Gruber C. and Klostius R., 2006. Derivation of the CHAMP-only global gravity field model TUG-CHAMP04 applying the energy integral approach. Stud. Geophys. Geod., 50, 59–74.

    Article  Google Scholar 

  • Beutler G., 2005. Methods of Celestial Mechanics. Springer, Berlin.

    Google Scholar 

  • Beutler G., Jäggi A., Hugentobler U. and Mervart L., 2006. Efficient satellite orbit modelling using pseudo-stochastic parameters. J. Geodesy, 80, 353–372.

    Article  Google Scholar 

  • Bock H., Jäggi A., Švehla D., Beutler G., Hugentobler U. and Visser P., 2007. Precise orbit determination for the GOCE satellite using GPS. Adv. Space Res., 39, 1638–1647.

    Article  Google Scholar 

  • Dach R., Hugentobler U., Fridez P. and Meindl M. (Eds.), 2007. Bernese GPS Software Version 5.0. Astronomical Institute, University of Bern, Bern, Switzerland.

    Google Scholar 

  • Ditmar P., Kuznetsov V., van Eck van der Sluijs A.A., Schrama E. and Klees R., 2006. ’DEOS_CHAMP_01C_70’: a model of the Earth’s gravity field computed from accelerations of the CHAMP satellite. J. Geodesy, 79, 586–601.

    Article  Google Scholar 

  • ESA, 1999. Gravity Field and Steady-State Ocean Circulation Explorer Mission. Reports for Mission Selection. The Four Candidate Earth Explorer Core Missions, SP-1233(1), European Space Agency, Noordwijk, The Netherlands.

    Google Scholar 

  • Földváry L., Švehla D., Gerlach C., Wermuth M., Gruber T., Rummel R., Rothacher M., Frommknecht B., Peters T. and Steigenberger P., 2004. Gravity model TUM-2Sp based on the energy balance approach and kinematic CHAMP orbits. In: Reigber C., Lühr H., Schwintzer P. and Wickert J. (Eds.), Earth Observation with CHAMP-Results from Three Years in Orbit, Springer Verlag, Heidelberg, Berlin, New York, 13–18.

    Google Scholar 

  • Gerlach C., Földváry L., Švehla D., Gruber T., Wermuth M., Sneeuw N., Frommknecht B., Oberndorfer H., Peters T., Rothacher M., Rummel R. and Steigenberger P., 2003. A CHAMP-only gravity field model from kinematic orbits using the energy integral. Geophys. Res. Lett., 30, Art.No.2037.

  • Goiginger H. and Pail R., 2007. Investigation of velocities derived from satellite positions in the framework of the energy integral approach. In: Fletcher K. (Ed.), Proceedings of the 3 rd International GOCE User Workshop, ESA Special Publication SP-627, ISBN 92-9092-938-3, European Space Agency, Noordwijk, The Netherlands, 319–324.

    Google Scholar 

  • GRACE, 1998. Gravity Recovery and Climate Experiment: Science and Mission Requirements Document. Revision A. JPLD-15928, NASA’s Earth System Science Pathfinder Program, Jet Propulsion Laboratory, Pasadena, CA.

    Google Scholar 

  • Ilk K.-H., 2002. Energy relations for the motion of two satellites within the gravity field of the Earth. In: Sideris M.G. (Ed.), Gravity, Geoid and Geodynamics 2000. International Association of Geodesy Symposia, 123, Springer-Verlag, Berlin, 129–135.

    Google Scholar 

  • Jäggi A., Hugentobler U. and Beutler G., 2005. Efficient stochastic orbit modeling techniques using leaast squares estimators. In: Sansò F. (Ed.), A Window on the Future of Geodesy. International Association of Geodesy Symposia, 128, Springer-Verlag, Berlin, 175–180.

    Chapter  Google Scholar 

  • Jäggi A., 2006. Pseudo-Stochastic Orbit Modeling of Low Earth Satellites Using the Global Positioning System. PhD Thesis, Astronomical Institute, University of Bern, Bern, Switzerland.

    Google Scholar 

  • Jäggi A., Beutler G., Bock H. and Hugentobler U., 2007. Kinematic and highly reduced-dynamic LEO orbit determination for gravity field estimation. In: Tregoning P. and Rizos C. (Eds.), Dynamic Planet-Monitoring and Understanding a Dynamic Planet with Geodetic and Oceanographic Tools. International Association of Geodesy Symposia, 130, Springer-Verlag, Berlin, 354–361.

    Google Scholar 

  • Jekeli C., 1999. The determination of gravitational potential differences from satellite-to-satellite tracking. Celest. Mech. Dyn. Astron., 75, 85–101.

    Article  Google Scholar 

  • Montenbruck O. and Gill E., 2000. Satellite Orbits-Models, Methods and Applications. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • O’Keefe J.A., 1957. An application of Jacobi’s integral to the motion of an Earth satellite. Astron. J., 62, 265–266.

    Article  Google Scholar 

  • Mayer-Gürr T., Ilk K.H., Eicker A. and Feuchtinger M., 2005. ITG-CHAMP01: a CHAMP gravity field model from short kinematic arcs over a one-year observation period. J. Geodesy, 78, 462–480.

    Article  Google Scholar 

  • Migliaccio R., Reguzzoni M. and Sansó F., 2003. Spacewise approach to satellite gravity field determination in the presence of coloured noise. J. Geodesy, 78, 304–313.

    Article  Google Scholar 

  • Pail R., Metzler B., Preimesberger T., Goiginger H., Mayrhofer R., Höck E., Schuh W.-D., Alkathib H., Boxhammer C., Siemes C. and Wermuth M., 2007. GOCE-Schwerefeldprozessierung: Software-Architektur und Simulationsergebnisse. Zeitschrift für Geodäsie, Geoinformation und Landmanagement, Heft 1/2007, Deutscher Verein f. Vermessungswesen e.V., 16–25.

  • Prange L., Jäggi A., Beutler G., Mervart L. and Dach R., 2008. Gravity field determination at the AIUB-the celestial mechanics approach. In: International Association of Geodesy Symposia, Springer-Verlag, Berlin (in print).

    Google Scholar 

  • Reigber C., Schwintzer P. and Lühr H., 1999. CHAMP geopotential mission. Boll. Geof. Teor. Appl., 40, 285–289.

    Google Scholar 

  • Reigber C., Schwintzer P., Neumayer K.-H., Barthelmes F., König R., Förste C., Balmino G., Biancale R., Lemoine J.-M., Loyer S., Bruinsma S., Perosanz F. and Fayard T., 2007. The CHAMP-only Earth gravity field model EIGEN-2. Adv. Space Res., 31, 1883–1888.

    Article  Google Scholar 

  • Rummel R., Gruber T. and Koop R., 2004. High level processing facility for GOCE: products and processing strategy. GOCE, the Geoid and Oceanography, Proceedings of the 2nd International GOCE User Workshop. ESA Special Publication SP-569, ISBN 92-9092-880-8, European Space Agency, Noordwijk, The Netherlands.

    Google Scholar 

  • Švehla D. and Rothacher M., 2002. Kinematic and reduced-dynamic precise orbit determination of low Earth orbiters. Adv. Geosci., 1, 47–56.

    Google Scholar 

  • Wu S.C., Yunck T.P. and Thornton C.L., 1991. Reduced-dynamic technique for precise orbit determination of low Earth satellites. J. Guid. Control Dyn., 14, 24–30.

    Article  Google Scholar 

  • Visser P.N.A.M., Sneeuw N. and Gerlach C., 2003. Energy integral method for gravity field determination from satellite orbit coordinates. J. Geodesy, 77, 207–216.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Jäggi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jäggi, A., Bock, H., Pail, R. et al. Highly-reduced dynamic orbits and their use for global gravity field recovery: A simulation study for GOCE. Stud Geophys Geod 52, 341–359 (2008). https://doi.org/10.1007/s11200-008-0025-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-008-0025-z

Key words

Navigation