Studia Geophysica et Geodaetica

, Volume 52, Issue 2, pp 237–254 | Cite as

Impact-pressure controlled orientation of shatter cone magnetizations in Sierra Madera, Texas, USA

  • T. AdachiEmail author
  • G. Kletetschka


A suite of Sierra Madera Impact deformed rocks was studied and magnetic analyses were performed. We characterized the magnetic signatures of two locations, sites A and B that have different physical characteristics of shock fractured structures as well as the magnetic signatures. Shatter cone at site A has a fine-scale (few to ∼10 mm) distributed array of complete shatter cones with sharp apex. Natural remanent magnetization (NRM) of site A shatter cone is distributed within the plane that is perpendicular to the apexes of the cones. Shatter cone at site B shows no apparent cone shape or apex, instead, a relatively larger scale and multiple striated joint set (MSJS) and sinusoidal continuous peak. NRM of site B shatter cone is clustered along the apexes. The difference in magnetization direction is a likely indicator of the shock pressure where parallel to apex indicates pressures larger than 10 GPa and perpendicular to apex indicate pressures less than 10 GPa. Intensities of NRM and saturation isothermal remanent magnetization (SIRM) contrast and fluctuate within a shatter cone as well as in between two sites. We observed a random orientation of magnetic vector directions and amplitudes changing over small scales leading to the absence of coherent macro-scale signature.

Key words

shatter cones demagnetization remagnetization impact crater shock fractures magnetism magnetic efficiency magnetic signatures magnetic anomaly Mars 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashworth J.R. and Schneider H., 1985. Deformation and transformation in experimentally shock-loaded quartz. Phys. Chem. Miner., 11, 241–249.CrossRefGoogle Scholar
  2. Baratoux D. and Melosh H.J., 2003. The formation of shatter cones by shock wave interference during impacting. Earth Planet. Sci. Lett., 216, 43–54.CrossRefGoogle Scholar
  3. Boon J.D. and Albritton C.C. Jr., 1936. Meteorite craters and their possible relationship to “cryptovolcanic structures”. Field and Laboratory, 5, 1–9.Google Scholar
  4. Carporzen L., Gilder S.A. and Hart R.J., 2005. Palaeomagnetism of the Vredefort meteorite crater and implications for craters on Mars. Nature, 435, 198–201.CrossRefGoogle Scholar
  5. Carporzen L., Gilder S.A. and Hart R.J., 2006. Origin and implication of two Verwey transitions in the basement rocks of the Vredefort meteorite crater, South Africa. Earth Planet. Sci. Lett., 251, 305–317.CrossRefGoogle Scholar
  6. Eggleton R.E. and Shoemaker E.M., 1961. Breccia at Sierra Madera, Texas. U.S. Geological Survey Professional Paper, 424-D, D151–D153.Google Scholar
  7. French B.M., 1998. Traces of Catastrophe, a Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures. Lunar and Planetary Institute, Contribution No. 954.Google Scholar
  8. Gibson H.M. and Spray J.G., 1998. Shock-induced melting and vaporization of shatter cone surfaces: evidence from the Sudbury impact structure. Meteorit. Planet. Sci., 33, 329–336.Google Scholar
  9. Grieve R.A.F., Langenhorst F. and Stoffler D., 1996. Shock metamorphism of quartz in nature and experiment. 2. Significance in geosciences. Meteorit. Planet. Sci., 31, 6–35.Google Scholar
  10. Hargraves R.B. and Perkins W.E., 1969. Investigations of the effect of shock on natrual remanent magnetism. J. Geophys. Res., 74, 2576–2589.CrossRefGoogle Scholar
  11. Hart R.J., Hargraves R.B., Andreoli M.A.G., Tredoux M. and Doucoure C.M., 1995. Magnetic anomaly near the center of the Vredfort structure-implications for impact-related magnetic signatures. Geology, 23, 277–280.CrossRefGoogle Scholar
  12. Hart R.J., Connell S.H., Cloete M. and Mare L., 2000. ’super magnetic’ rocks generated by shock metamorphism from the centre of the Vredefort impact structure, South Africa. S. Afr. J. Geol., 103, 151–155.CrossRefGoogle Scholar
  13. Huson S.A., Foit F.F., Watkinson A.J. and Pope M.C., 2006. X-ray diffraction powder patterns and thin section observations from the Sierra Madera Impact Structure. Lunar and Planetary Science, XXXVII, 2377.pdf (
  14. Kletetschka G., Kohout T. and Wasilewski P.J., 2003a. Magnetic remanence in the Murchison meteorite. Meteorit. Planet. Sci., 38, 399–405.Google Scholar
  15. Kletetschka G., Ness N.F., Wasilewski P.J., Connerney J.E.P. and Acuna M.H., 2003b. Possible mineral sources of magentic anomalies on Mars. The Leading Edge, 22, 766–768.CrossRefGoogle Scholar
  16. Kletetschka G., Acuna M.H., Kohout T., Wasilewski P.J. and Connerney J.E.P., 2004a. An empirical scaling law for acquisition of thermoremanent magnetization (vol 225, pg 279, 2004). Earth Planet. Sci. Lett., 228, 573–573.CrossRefGoogle Scholar
  17. Kletetschka G., Connerney J.E.P., Ness N.F. and Acuna M.H., 2004b. Pressure effects on martian crustal magnetization near large impact basins. Meteorit. Planet. Sci., 39, 1839–1848.Google Scholar
  18. Nicolaysen L.O. and Reimold W.U., 1999. Vredefort shatter cones revisited. J. Geophys. Res.-Solid Earth, 104, 4911–4930.CrossRefGoogle Scholar
  19. Pohl J., 1981. Planetary and lunar magnetism: In: ESA The Solar System and Its Exploration, 115–120 (SEE N82-26087 16-88).Google Scholar
  20. Sagy A., Fineberg J. and Reches Z., 2004. Shatter cones: branched, rapid fractures formed by shock impact. J. Geophys. Res.-Solid Earth, 109, B10209.CrossRefGoogle Scholar
  21. Sagy A., Reches Z. and Fineberg J., 2002. Dynamic fracture by large extraterrestrial impacts as the origin of shatter cones. Nature, 418, 310–313.CrossRefGoogle Scholar
  22. Stoffler D. and Langenhorst F., 1994. Shock metamorphism of quartz in nature and experiment. 1. Basic observation and theory. Meteoritics, 29, 155–181.Google Scholar
  23. Wasilewski P., 1977. Magnetic and microstructural properties of some lodestones. Phys. Earth Planet. Inter., 15, 349–362.CrossRefGoogle Scholar
  24. Wasilewski P. and Kletetschka G., 1999. Lodestone-nature’s only permanent magnet, what it is and how it gets charged. Geophys. Res. Lett., 26, 2275–2278.CrossRefGoogle Scholar
  25. Wieland F., Reimold W.U. and Gibson R.L., 2006. New observations on shatter cones in the Vredefort impact structure, South Africa, and evaluation of current hypotheses for shatter cone formation. Meteorit. Planet. Sci., 41, 1737–1759.CrossRefGoogle Scholar
  26. Wilshire H.G., Howard K.A. and Offield T.W., 1971. Impact breccias in carbonate rocks, Sierra Madera, Texas. Geol. Soc. Am. Bull., 82, 1009–1017.CrossRefGoogle Scholar
  27. Wilshire H.G., Offield T.W., Howard K.A. and Cummings D., 1972. Geology of the Sierra Madera cryptoexplosion structure, Pecos County, Texas. USGS Professional Paper, No. 599-H, 1–49.Google Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2008

Authors and Affiliations

  1. 1.Department of PhysicsCatholic University of AmericaWashingtonUSA
  2. 2.NASA Goddard Space Flight CenterGreenbeltUSA
  3. 3.Institute of GeologyAcad. Sci. Czech RepublicPraha 6Czech Republic

Personalised recommendations