Skip to main content
Log in

Geoeffectiveness of XRA events associated with RSP II and/or RSP IV estimated using the artificial neural network

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

A forecasting scheme of geomagnetic activity is presented, based on the analysis of the geoeffectiveness of X-ray flares, accompanied by Type II and/or Type IV radio bursts (RSP) observed on the solar disc in the years 1996–2004. The neural network was used to construct this scheme enabling us to determine the probability, with which flares will be followed by a geomagnetic response of a particular intensity. The successfulness of forecasts produced after the fact depended on the flare class and on the combination of radio-burst types. In the case of RSP IV, 58% of the geomagnetic responses of X-ray flares of at least B class were successful. If only RSP II was observed, the forecast was successful only for flares of the X class (67% of successful forecasts). In the second step, a strong geomagnetic response was correctly forecast after geoeffective flares in 58% of the cases. The results are in a good agreement with recent papers based on physical modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berghmans D., Van der Linden R.A.M., Vanlommel P., Warnant L., Zhukov A., Robbrecht E., Clette F., Podladchikova O., Nicula B., Hochedez J.F., Wauters L. and Willems S., 2005. Solar activity: nowcasting and forecasting at SIDC. Ann. Geophys., 23, 3115–3128.

    Article  Google Scholar 

  • Boberg F., Wintoft P. and Lundstedt H., 2000. Real time Kp predictions from solar wind data using neural networks. Phys. Chem. Earth, 25, 275–280.

    Google Scholar 

  • Bochníček J., Hejda P. and Valach F., 2007. Solar energetic events in the years 1996–2004. The analysis of their geoeffectiveness. Stud. Geophys. Geod., 51, 439–447.

    Article  Google Scholar 

  • Cliver E.W. and Hudson H.S., 2002. CMEs: How do the puzzle pieces together? J. Atmos. Terr. Phys., 64, 231–252.

    Article  Google Scholar 

  • Detman T., 1998. Toward real-time operational model predictions. In: I. Sandahl and E. Jonsson (Eds.), Proceedings of AI Aplications in Solar-Terrestrial Physics. ESA Publishing Division, Noordwijk, The Netherlands, WPP-148, 135–143.

    Google Scholar 

  • Dryer M., 1996. Comments on the origins of oronal mass ejections. Sol. Phys., 169, 421–429.

    Article  Google Scholar 

  • Fry C.D., Dryer M., Smith Z., Sun W., Deehr C.S. and Akasofu S.I., 2003. Forecasting solar wind structures and shock arrival times using an ensemble of models. J. Geophys. Res., 108(A2), 1070, doi: 10.1029/2002JA009474.

    Article  Google Scholar 

  • Gleisner H. and Lundstedt H., 2001a. A neural network-based local model for prediction of geomagnetic disturbances. J. Geophys. Res., 106, 8425–8434.

    Article  Google Scholar 

  • Gleisner H. and Lundstedt H., 2001b. Auroral electrojet predictions with dynamic neural network. J. Geophys. Res., 106, 24541–24550.

  • Gleisner H. and Watermann J., 2006a. Solar energetic particle flux enhancement as an indicator of halo coronal mass ejection geoeffectivness. Space Weather, 4, Art.No. S06006, doi:10.1029/2006SW000220.

  • Gleisner H. and Watermann J., 2006b. Concepts of medium-range (1–3 days) geomagnetic forecasting. Space Weather Prediction: Applications and Validation. Advances in Space Research, 37, 1116–1123.

    Article  Google Scholar 

  • Gurney K., 1997. An Introduction to Neural Networks. UCL Press, London.

    Google Scholar 

  • Harrison R.A., 1996. Coronal magnetic storms: A new perspective on flares and the “solar flare myth” debate. Sol. Phys., 166, 441–444.

    Article  Google Scholar 

  • Hertz J., Krogh A. and Palmer R.G., 1991. Introduction to the Theory of Neural Computation. Addison-Wesley, Reading, MA.

    Google Scholar 

  • Jankovičová D., Dolinský P., Valach F. and Vörös Z., 2002. Neural network-based nonlinear prediction of magnetic storms. J. Atmos. Sol.-Terr. Phys., 64, 651–656.

    Article  Google Scholar 

  • Kim R.S., Cho K.S., Moon Y.J., Kim Y.H., Yi Y., Dryer M., Bong S.C. and Park Y.D., 2005. Forecast evaluation of the coronal mass ejection (CME) geoeffectiveness using halo CMEs from 1997 to 2003. J. Geophys. Res., 110, A11104, doi: 10.1029/2005JA011218.

  • Kosugi T. and Shibata K., 1997. Solar coronal dynamics and flares as a cause of interplanetary disturbances. In: B.T. Tsurutani, W.D. Gonzales, Y. Kamide and J.K. Arballo (Eds), Magnetic Storms. Geophysical Monograph, 98, AGU Press, Washington D.C., 21–34.

    Google Scholar 

  • Lundstedt H., 1992. Neural network and predictions of solar-terrestrial effects. Planet Space Sci., 40, 457–464.

    Article  Google Scholar 

  • Lundstedt H., Wintoft P., Gleisner H., Boberg F., Hasanov T. and Kronfeldt I., 2002a. Forecasting space weather and effects using knowledge-based neurocomputing. In: Proceedings of Space Weather Workshop: Looping Towards a European Space Weather Programme, 17–19 December 2001. ESA Publishing Division, Noordwijk, The Netherlands, WPP-194, 179–184.

    Google Scholar 

  • Lundstedt H., Gleisner H. and Wintoft P., 2002b. Operational forecasts of geomagnetic Dst index. Geophys. Res. Lett., 29, 2181, doi: 10.1029/2002GL016151.

    Article  Google Scholar 

  • McKenna-Lawlor S.M.P., Dryer M., Kartalev M.D., Smith Z., Fry C.D., Sun W., Deehr C.S., Kecskemety K. and Kudela K., 2006. Near real-time predictions of the arrival at Earth of flare-related shocks during Solar cycle 23. J. Geophys. Res., 111, A11103, doi: 10.1029/2005Ja011162.

  • Nørgaard M., 1997. Neural Network Based System Identification Toolbox. Tech. Report. 97-E-851, Department of Automation, Technical University of Denmark, Copenhagen, Denmark.

    Google Scholar 

  • Robbrecht E. and Berghmans D., 2006. A broad perspective on automated CME tracking: Towards higher level space weather forecasting. In: N. Gopalswamy, R. Mewaldt and J. Torsti (Eds), Solar Eruptions and Energetic Particles. Geophysical Monograph Series, 165, AGU Press, Washington D.C., 33–41.

    Google Scholar 

  • Srivastava N. and Venkatakrishnan P., 2002. Relation between CME speed and geomagnetic storm intensity. Geophys. Res. Lett., 29, 1287, doi:10.1029/2001GL013597.

    Article  Google Scholar 

  • Srivastava N., 2005. A logistic regression model for predicting the occurrence of intense geomagnetic storms. Ann. Geophys., 23, 2969–2974.

    Google Scholar 

  • Wu J.G. and Lundstedt H., 1996. Prediction of geomagnetic storms from solar wind data using elman recurrent neural network. Geophys. Res. Lett., 23, 319–322.

    Article  Google Scholar 

  • Yermolaev Yu.I., Yermolaev M.Yu., Zastenker G.N., Zelenyi L.M., Petrukovich A.A. and Sauvaud J.-A., 2005. Statistical studies of geomagnetic storm dependencies on interplanetary events a review. Planet. Space Sci., 53, 189–196.

    Article  Google Scholar 

  • Zhao X., Feng X. and Wu C.C., 2006. Characteristics of solar flares associated with interplanetary shock or nonshock events at Earth. J. Geophys. Res., 111, A09103, doi: 10.1029/2006JA011784.

Download references

Author information

Authors and Affiliations

Authors

Additional information

fridrich@geomag.sk

ph@ig.cas.cz, jboch@ig.cas.cz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valach, F., Hejda, P. & Bochníček, J. Geoeffectiveness of XRA events associated with RSP II and/or RSP IV estimated using the artificial neural network. Stud Geophys Geod 51, 551–562 (2007). https://doi.org/10.1007/s11200-007-0032-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-007-0032-5

Key words

Navigation