Skip to main content
Log in

Retrieval of source parameters of an event of the 2000 West Bohemia earthquake swarm assuming an anisotropic crust

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

We propose an inversion scheme for retrieval of characteristics of seismic point sources, which in contrast to common practice, takes into account anisotropy. If anisotropy is neglected during inversion, the moment tensors retrieved from seismic waves generated by sources situated in anisotropic media may be biased. Instead of the moment tensor, the geometry of the source is retrieved directly in our inversion; if necessary, the moment tensor can be then determined from the source geometry aposteriori. The source geometry is defined by the orientation of the slip vector and the fault normal as well as the strength of the event given by the size of the slip and the area of the fault. This approach allows direct interpretation of the source geometry in terms of shear and tensile faulting. It also makes possible to identify volumetric source changes that occur during rupturing.

We apply the described algorithm to one event of the 2000 West Bohemia earthquake swarm episode. For inversion we use information of the direct P waves. The structure is approximated by three different models determined from travel-time observations. The models are inhomogeneous isotropic, inhomogeneous anisotropic, and homogeneous anisotropic. For these models we obtain seismic moments MT = 3.2 − 3.8 × 1014 Nm and left-lateral near-vertical oblique normal faulting on a N-S trending rupture surface. The orientation of the rupture surface is consistent with fault-plane solutions of earlier studies and with the spatial distribution of other events during this swarm. The studied event seems to be accompanied by a small amount of crack opening. The amount of crack opening is slightly reduced when the inhomogeneous anisotropic model is assumed, but it persists. These results and additional independent observations seem to indicate that tensile faulting occurs as a result of high fluid pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aki K. and Richards P.G, 2002. Quantitative Seismology. University Science Books, Sausalito, CA, USA.

    Google Scholar 

  • Boušková A., 2005. Catalogue of Seismic Events. Geophysical Institute, Academy of Sciences of the Czech Republic, Prague. Online at http://www.ig.cas.cz/seismo/Webnet/.

    Google Scholar 

  • Červený V., 2001. Seismic Ray Theory. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Dahm T., Horálek J. and Šílený J., 2000. Comparison of absolute and relative moment tensor solutions for the January 1997 West Bohemia earthquake swarm. Stud. Geophys. Geod., 44, 233–250.

    Article  Google Scholar 

  • Dreger S.D., Tkalčič H. and Johnston M., 2000. Dilational processes accompanying earthquakes in the Long Valley Caldera. Science, 288, 122–125.

    Article  Google Scholar 

  • Efron B., 1981. The nonparametric estimates of standard errors-the jackknife, the bootstrap and other methods. Biometrika, 68, 589–599.

    Article  Google Scholar 

  • Fischer T., 2003. The August–December 2000 earthquake swarm in NW Bohemia: the first results based on automatic processing of seismograms. J. Geodynamics, 35, 59–81.

    Article  Google Scholar 

  • Fischer T. and Horálek J., 2005. Slip-generated patterns of swarm microearthquakes from West Bohemia/Vogtland (Central Europe): Evidence of their triggering mechanism? J. Geophys. Res., 110, B05S21, doi:10.1029/2004JB003363.

  • Foulger G.R., Julian B.R., Hill D.P., Pitt A.M., Malin P.E. and Shalev E., 2004. Non-double-couple microearthquakes at Long Valley caldera, California, provide evidence for hydraulic fracturing. J. Volcanol. Geotherm. Res., 132, 45–71.

    Article  Google Scholar 

  • Gajewski D., 1993. Radiation from a point source in general anisotropic media. Geophys. J. Int., 113, 299–317.

    Article  Google Scholar 

  • Hainzl S. and Fischer T., 2002. Indications for a successively triggered rupture growth underlying the 2000 earthquake swarm in Vogtland/NW Bohemia. J. Geophys. Res., 107, 2338, doi:10.1029/2002JB001865.

    Article  Google Scholar 

  • Hainzl S. and Ogata Y., 2005. Detecting fluid signals in seismicity data through statistical earthquake modelling. J. Geophys. Res., 110, B05S07, doi:10.1029/2004JB003247.

  • Henry C., Woodhouse J.H. and Das S., 2002. Stability of earthquake moment tensor inversions: effect of the double-couple constraint. Tectonophysics, 356, 115–124.

    Article  Google Scholar 

  • Hinzen K.G., 2003. Stress field in the Northern Rhine area, Central Europe, from earthquake fault plane solutions. Tectonophysics, 377, 325–356.

    Article  Google Scholar 

  • Jost M.L. and Herrmann R.B., 1989. A student’s guide to and review of moment tensors. Seism. Res. Letters, 60, 37–57.

    Google Scholar 

  • Julian B.R., Miller A.D. and Foulger G.R., 1997. Non-double-couple earthquake mechanisms at the Hengill-Grensdalur volcanic complex, Southwest Iceland. Geophys. Res. Lett., 24, 743–746.

    Article  Google Scholar 

  • Julian B.R., Miller A.D. and Foulger G.R., 1998. Non-double-couple earthquakes, 1. theory. Rev. Geophys., 36, 525–549.

    Article  Google Scholar 

  • Kanamori H., Ekström G., Dziewonski A., Barker J.S. and Sipkin S.A., 1993. Seismic radiation by magma injection: An anomalous seismic event near Tori Shima, Japan. J. Geophys. Res., 98, 6511–6522.

    Google Scholar 

  • Kawasaki I. and Tanimoto T., 1981. Radiation patterns of body waves due to the seismic dislocation occuring in an anisotropic source medium. Bull. Seismol. Soc. Amer., 71, 37–50.

    Google Scholar 

  • Klinge K., Plenefisch T. and Stammler K., 2003. The earthquake swarm 2000 in the region Vogtland/NW-Bohemia-earthquake recording at German stations and temporal distribution of events. J. Geodynamics, 35, 83–96.

    Article  Google Scholar 

  • Kuge K., 1994. Data-dependent non-double-couple-components of shallow earthquake source mechanisms: Effects of waveform inversion stability. Geophys. Res. Lett., 21, 9–12.

    Article  Google Scholar 

  • Málek J., Janský J., Novotný O., Rössler D. and the CELEBRATION 2000 Working Group, 2004. Vertically inhomogeneous models of the upper crustal structure in the West-Bohemian seismoactive region inferred from the CELEBRATION 2000 refraction data. Stud. Geophys. Geod., 48, 709–730.

    Article  Google Scholar 

  • Málek J., Horálek J. and Janský J., 2005. One-dimensional qP-wave velocity model of the upper crust for the West Bohemia/Vogtland earthquake swarm region. Stud. Geophys. Geod., 49, 709–730.

    Article  Google Scholar 

  • Menke W., 1989. Geophysical Data Analysis: Discrete Inverse Theory. International Geophysics Series, Vol. 45. Academic Press, San Diego, USA.

    Google Scholar 

  • Miller A.D., Foulger G.R. and Julian B.R., 1998. Non-double-couple earthquakes, 1. observations. Rev. Geophys., 36, 551–568.

    Article  Google Scholar 

  • Musgrave M.J.P., 1970. Crystal Acoustics. Holden-Day, San Fransisco, USA.

    Google Scholar 

  • Novotný O., 1996. A preliminary seismic model for the region of the West-Bohemian earthquake swarms. Stud. Geophys. Geod., 40, 353–366.

    Article  Google Scholar 

  • Parotidis M., Shapiro S.A. and Rothert E., 2005. Evidence for triggering of the Vogtland swarms 2000 by pore pressure diffusion. J. Geophys. Res., 110, B05S10, doi:10.1029/2004JB003267.

  • Plenefisch T. and Klinge K., 2003. Temporal variations of focal mechanisms in the Nový Kostel focal zone (Vogtland/NW-Bohemia)-comparison of the swarms 1994, 1997 and 2000. J. Geodynamics, 35, 145–156.

    Article  Google Scholar 

  • Pšenčík I., 1998. ANRAY Package, Version 4.10. Dept. of Geophysics, Charles University, Prague, Czech Republic, 403–404. Online at http://sw3d.mff.cuni.cz.

    Google Scholar 

  • Pšenčík I. and Gajewski D., 1998. Polarization, phase velocity, and NMO velocity of qP-waves in arbitrary weakly anisotropic media. Geophysics, 63, 1754–1766.

    Article  Google Scholar 

  • Pšenčík I. and Teles T.N., 1996. Point source radiation in inhomogeneous anisotropic structures. Pure Appl. Geophys., 148, 591–623.

    Article  Google Scholar 

  • Ramos-Martínez J. and McMechan G.A., 2001. Source-parameter estimation by full waveform inversion in 3D heterogeneous, viscoelastic, anisotropic media. Bull. Seismol. Soc. Amer., 91, 276–291.

    Article  Google Scholar 

  • Rössler D., Rümpker G. and Krüger F., 2004. Ambiguous moment tensors and radiation patterns in anisotropic media with applications to the modeling of earthquake mechanisms in W-Bohemia. Stud. Geophys. Geod., 48, 233–250.

    Article  Google Scholar 

  • Rössler D., Pšenčík I., Krüger F. and Rümpker G., 2005. Retrieval of source parameters for local earthquakes in anisotropic media. Dept. of Geophysics, Charles University, Prague, Czech Republic, 333–344. Online at http://sw3d.mff.cuni.cz.

    Google Scholar 

  • Rössler D., Krüger F. and Rümpker G., 2007. Inversion for seismic moment tensors in anisotropic media using standard techniques for isotropic media. Geophys. J. Int., 169, 136–148, doi: 10.1111/j.1365-246X.2006.03243.x.

    Article  Google Scholar 

  • Růžek B., Vavryčuk V., Hrubcová P., Zedník J. and the CELEBRATION Working Group, 2003. Crustal anisotropy in the Bohemian Massif, Czech Republic: observations based on Central European lithospheric experiment based on refraction CELEBRATION 2000. J. Geophys. Res., 108, 2392, doi: 10.1029/2002JB002242.

    Article  Google Scholar 

  • Silver G.P. and Jordan T.H., 1982. Optimal estimation of the scalar seismic moment. Geophys. J. R. Astr. Soc., 70, 755–787.

    Google Scholar 

  • Sipkin S.A., 1986a. Estimation of earthquake source parameters by the inversion of waveform data: global seismicity, 1981–1983. Bull. Seismol. Soc. Amer., 76, 1515–1541.

    Google Scholar 

  • Sipkin S.A., 1986b. Interpretation of non-double-couple earthquake mechanisms derived from moment tensor inversions. J. Geophys. Res., 91, 531–547.

    Google Scholar 

  • Snoke J.A., 2003. FOCMEC: FOcal MEChanism determinations. In: W. Lee, H. Kanamori, P. Jennings and C. Kisslinger (Eds.), International Handbook of Earthquake and Engineering Seismology. Academic Press, San Diego USA, Part B, 1629–1630 (and accompanying CD).

    Google Scholar 

  • Solomon S.C. and Julian B.R., 1974. Seismic constraints on ocean-ridge mantle structure: anomalous fault plane solutions from first motions. Geophys. J. R. Astr. Soc., 38, 265–285.

    Google Scholar 

  • Sykes L.R., 1967. Mechanism of earthquakes and nature of faulting on the mid-ocean ridges. J. Geophys. Res., 72, 5–27.

    Article  Google Scholar 

  • Vavryčuk V., 1993. Crustal anisotropy from local observations of shear-wave splitting in West Bohemia, Czech Republic. Bull. Seismol. Soc. Amer., 83, 1420–1441.

    Google Scholar 

  • Vavryčuk V., 2001. Inversion for parameters of tensile earthquakes. J. Geophys. Res., 106, 16339–16355.

    Google Scholar 

  • Vavryčuk V., 2002. Non-double-couple earthquakes of 1997 January in West Bohemia, Czech Republic: evidence of tensile faulting. Geophys. J. Int., 149, 364–373.

    Article  Google Scholar 

  • Vavryčuk V., 2005. Focal mechanisms in anisotropic media. Geophys. J. Int., 161, 334–346.

    Article  Google Scholar 

  • Voigt W., 1928. Lehrbuch der Kristallphysik. Teubner-Verlag, Leipzig, Germany.

    Google Scholar 

  • Wirth W., Plenefisch T., Klinge K., Stammler K. and Seidl D., 2000. Focal mechanisms and stress field in the region Vogtland/Western Bohemia. Stud. Geophys. Geod., 44, 126–141.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rössler, D., Krüger, F., Pšenčík, I. et al. Retrieval of source parameters of an event of the 2000 West Bohemia earthquake swarm assuming an anisotropic crust. Stud Geophys Geod 51, 231–254 (2007). https://doi.org/10.1007/s11200-007-0012-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-007-0012-9

Keywords

Navigation