Skip to main content

Advertisement

Log in

Tomography and velocity structure of the crust and uppermost mantle in southeastern Europe obtained from surface wave analysis

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

A set of two hundred shear-wave velocity models of the crust and uppermost mantle in southeast Europe is determined by application of a sequence of methods for surface-waves analysis. Group velocities for about 350 paths have been obtained after analysis of more than 600 broadband waveform records. Two-dimensional surface-wave tomography is applied to the group-velocity measurements at selected periods and after regionalisation, two sets of local dispersion curves (for Rayleigh and Love waves) are constructed in the period range 8–40 s. The shear-wave velocity models are derived by applying non-linear iterative inversion of local dispersion curves for grid cells predetermined by the resolving power of data. The period range of observations limits the velocity models to depths of 70 km in accordance to the penetration of the surface waves with a maximum period of 40 s. Maps of the Moho boundary depth, velocity distribution above and below Moho boundary, as well as velocity distribution at different depths are constructed. Well-known geomorphologic units (e.g. the Pannonian basin, southeastern Carpathians, Dinarides, Hellenides, Rodophean massif, Aegean Sea, western Turkey) are delineated in the obtained models. Specific patterns in the velocity models characterise the southeast Carpathians and adjacent areas, coast of Albania, Adriatic coast of southern Italy and the southern coast of the Black Sea. The models obtained in this study for the western Black Sea basin shows the presence of layers with shear-wave velocities of 3.5 km/s–3.7 km/s in the crust and thus do not support the hypothesis of existence of oceanic structure in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belousov V.V., Volvovsky B.S., Arkhipov I.V., Buryanova B.V., Evsyukov Y.D., Goncharov V.P., Gordienco V.V., Ismagilov D.F., Kislov G.K., Kogan L.I., Kondyurin A.V., Koslov V.N., Lebedev L.I., Lokholatnikov V.M., Malovitsky Y.P., Moskalenko V.N., Neporochnov Y.P., Otisty B.K., Rusakov O.M., Shimkus K.M., Shlezinger A.E., Sochelnikov V.V., Sollogub V.B., Solovyev V.D., Starostenko V.I., Starovoitov A.F., Terekhov A.A., Volvovsky I.S., Zhigunov A.S. and Zolotarev V.G., 1988. Structure and evolution of the earth’s crust and upper mantle of the Black Sea. Boll. Geofis. Teor. Appl., 30, 109–196.

    Google Scholar 

  • Calcagnile G., D’Ingeo F., Farrugia P. and Panza G.F., 1982. The lithosphere in the central-eastern Mediterranean area. Pure Appl. Geophys., 120, 389–406.

    Article  Google Scholar 

  • Calcagnile G., Mascia U., Del Gaudio V. and Panza G.F., 1984. Deep structure of southeastern Europe from Rayleigh waves. Tectonophysics, 110, 189–200.

    Article  Google Scholar 

  • Dachev C., 1980. Geodynamic problems in Balkan Peninsula in the frame of regional geophysical data. In: I. Nachev and R. Ivanov (Eds.), Geodynamic of Balkans. Technika, Sofia, Bulgaria, 9–25 (in Bulgarian).

    Google Scholar 

  • Dachev C., 1988. Structure of the Earth’s Crust in Bulgaria. Technika, Sofia, Bulgaria (in Bulgarian).

    Google Scholar 

  • Ditmar P.G. and Yanovskaya T.B., 1987. A generalization of the Backus-Gilbert method for estimation of lateral variations of surface wave velocity. Izv. AN SSSR, Phys. Solid Earth, 23, 470–477.

    Google Scholar 

  • GEOFON, 2000. GeoForschungsNetz, GeoforschungsZentrum, Potsdam, Germany (http://www.gfz-potsdam.de/geofon).

  • Gobarenko V., Nikolova S. and Yanovskaya T.B., 1987. 2-D and 3-D velocity patterns in southeastern Europe, Asia Minor and the eastern Mediterranean from seismological data. Geophys. J. R. astr. Soc., 90, 473–484.

    Google Scholar 

  • Hauser F., Raileanu V., Fielitz W., Bala A., Prodehl C., Polonik G. and Schulze A., 2001. VRANCEA99 — the crustal structure beneath the southeastern Carpathians and the Moesian Platform from a seismic refraction profile in Romania. Tectonophysics, 340, 233–256.

    Article  Google Scholar 

  • Herrmann R.B. (Ed.), 1991. Surface Wave Inversion Program. Saint Louis University, Saint Louis.

    Google Scholar 

  • Holvand I. and Husebye E., 1982. Upper mantle heterogeneities beneath Eastern Europe. Tectonophysics, 90, 137–151.

    Article  Google Scholar 

  • Hurtig E., Čermák V., Haenel R. and Zui V. (Eds.), 1991. Geothermal Atlas of Europe. Hermann Haack Verlag, Gotha.

    Google Scholar 

  • IRIS, 2000. Incorporated Research Institutions for Seismology, Washington, USA (http://www.iris.washington.edu).

  • ISC, 2000. International Seismological Centre, Bergshire, UK (http://www.isc.ac.uk).

  • Kalogeras I. and Burton P., 1996. Shear-wave velocity models from Rayleigh-wave dispersion in the broader Aegean area. Geophys. J. Int., 125, 679–695.

    Google Scholar 

  • Karagianni E., Panagiotopoulos D., Panza G., Suhadolc P., Papazachos C., Papazachos B., Kiratzi A., Hatzfeld D., Makropoulos K., Priestley K. and Vuan A., 2002. Rayleigh wave group velocity tomography in the Aegean area. Tectonophysics, 358, 187–209.

    Article  Google Scholar 

  • Kennett B.L.N. (Ed.), 1991. IASPEI 1991 Seismological Tables. Research School of Earth Sciences, Australian National University, Canberra, Australia.

    Google Scholar 

  • Laske G. and Masters G., 1997. A global digital maps of sediment thickness. EOS Trans. AGU, 78, F483 (http://mahi.ucsd.edu/Gabi/sediment.html).

    Google Scholar 

  • Levshin A.L., Yanovskaya T.B., Lander A.V., Bukchin B.G., Barmin M.P., Ratnikova L.I. and Its E.N., 1989. Surface waves in vertically inhomogeneous media. In: V.I. Keilis-Borok (Ed.), Surface Seismic Waves in Laterally Inhomogeneous Earth. Kluiwer Publ. House, Dordrecht/Boston/London, 131–182.

    Google Scholar 

  • Marquering H. and Snieder R., 1996. Shear-wave velocity structure beneath Europe, the northeastern Atlantic and western Asia from waveform inversions including surface — wave mode coupling. Geophys. J. Int., 127, 283–304.

    Google Scholar 

  • Martin M., Ritter J.R.R. and the CALIXTO Working Group, 2005. High-resolution teleseismic body-wave tomography beneath SE Romania — I. Implication for three-dimensional versus one dimensional crustal correction strategies with a new crustal velocity models. Geophys. J. Int., 162, 448–460.

    Article  Google Scholar 

  • McClusky S. et al., 2000. Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J. Geophys. Res., 105, 5695–5719.

    Article  Google Scholar 

  • MEDNET, 2000. Mediterranean Network, Rome, Italy (http://mednet.ingv.it).

  • Mindevalli O.Y. and Mitchell B.J., 1989. Crustal structure and possible anisotropy in Turkey from seismic surface-wave dispersion. Geophys. J. Int., 98, 93–106.

    Google Scholar 

  • NEIC, 2000. National Earthquake Information Centre, Washington, USA (http://neic.usgs.gov).

  • Nemcok M., Pospisil L., Lexa J. and Donelick R.A., 1998. Tertiary subduction and slab break-off model of the Carpathian-Pannonian region. Tectonophysics, 295, 307–340.

    Article  Google Scholar 

  • NGDC, 2003. National Geophysical Data Center, Washington, USA (http://www.ngdc.noaa.gov/mgg).

  • Nicolich R. and Dal Piaz G.V., 1988. Isobate della Moho. In: P. Scandone (Ed.), Structural Model of Italy. Progetto Finalizzato Geodinamica, CNR, Roma.

    Google Scholar 

  • Novotný O., Zahradník J. and Tselentis G.-A., 2001. Northwestern Turkey earthquakes and the crustal structure inferred from surface waves observed in Western Greece. Bull. Seismol. Soc. Amer., 91, 875–879.

    Article  Google Scholar 

  • Panza G.F. and Pontevivo A., 2004. The Calabrian Arc: a detailed structural model of the lithosphere-asthenosphere system. Rendiconti Accademia Nazionale della Scienze detta dei XL, Memorie Scienza Fisiche e Naturali, 2, 51–88.

    Google Scholar 

  • Panza G.F., Pontevivo A., Chimera G., Raykova R. and Aoudia A., 2003. The lithosphere-astenosphere: Italy and surroundings. Episodes, 26, 169–174.

    Google Scholar 

  • Papazachos B., 1969. Phase velocities of Rayleigh waves in southeastern Europe and eastern Mediterranean Sea. Pure Appl. Geophys., 75, 47–55.

    Article  Google Scholar 

  • Piromallo C. and Morelli A., 2003. P wave tomography of the mantle under the Alpine-Mediterranean area. J. Geophys. Res., 108, 2065.

    Article  Google Scholar 

  • Raileanu V., Diaconescu C. and Radulescu F., 1994. Characteristics of Romanian lithosphere from deep seismic reflection profiling. Tectonophysics, 239, 165–185.

    Article  Google Scholar 

  • Raykova R., 2005. Structure of the Earth’s Crust and Upper Mantle in Southeastern Europe from Surface Waves. PhD thesis, Geophysical Institute of BAS, Sofia, Bulgaria.

    Google Scholar 

  • Raykova R. and Nikolova S., 2003. Anisotropy in the Earth’s Crust and the Uppermost Mantle in the Southeastern Europe Obtained from Rayleigh and Love Surface Waves. J. Appl. Geophys., 54, 247–256.

    Article  Google Scholar 

  • Raykova R. and Panza G., 2006. Surface waves tomography and non-linear inversion in the southeast Carpathians. Phys. Earth Planet. Inter., 157, 164–180.

    Article  Google Scholar 

  • Rizhikova S. and Petkov I., 1977. Structure of the Earth’s crust in the region of Black Sea by dispersion of the group velocities of Rayleigh and Love waves. Geophys. Symp. AN SSSR, 80, 24–32 (in Russian).

    Google Scholar 

  • Snieder R., 1988. Large-scale waveform inversions of surface waves for lateral heterogeneity. 2. Application to surface waves in Europe and the Mediterranean. J. Geophys. Res., 93, 12067–12080.

    Google Scholar 

  • Sollogub G., Guterch A. and Prosen D. (Eds.), 1980. Structure of the Earth’s Crust in Central and East Europe by Geophysical Data. Naukova Dumka, Kiev, Ukraine (in Russian).

    Google Scholar 

  • Spakman W., 1991. Delay-time tomography of the upper mantle below Europe, the Mediterranean, and Asia Minor. Geophys. J. Int., 107, 309–332.

    Google Scholar 

  • Van der Meijde M., van der Lee S. and Giardini D., 2003. Crustal structure beneath broad-band seismic stations in the Mediterranean region. Geophys. J. Int., 152, 729–739.

    Article  Google Scholar 

  • Villasenor A., Ritzwoller M.H., Levshin A.L., Barmin M.P., Engdahl E.R., Spakman W. and Trampert J., 2001. Shear velocity structure of Central Eurasia from inversion of surface wave velocities. Phys. Earth Planet. Inter., 123, 169–184.

    Article  Google Scholar 

  • Yanovskaya T.B., 1997. Resolution estimation in the problems of seismic ray tomography. Izv. Phys. Solid Earth, 33, 762–765.

    Google Scholar 

  • Yanovskaya T.B., 2001. Development of methods for surface-wave tomography based on Backus-Gilbert approach. In: V. Keilis-Borok and G.M. Molchan (Eds.), Computational Seismology, 32, 11–26.

  • Yanovskaya T.B. and Nikolova S.B., 1984. Group velocity patterns of Rayleigh and Love surface waves in Southeastern Europe and Asia Minor. Bulg. Geophys. J., 10, 83–92.

    Google Scholar 

  • Yanovskaya T.B. and Ditmar P.G., 1990. Smoothness criteria in surface-wave tomography. Geophys. J. Int., 102, 63–72.

    Google Scholar 

  • Yanovskaya T., Kizima E. and Antonova L., 1998. Structure of the crust in the Black Sea and adjoining regions from surface wave data. J. Seismol., 2, 303–316.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raykova, R., Nikolova, S. Tomography and velocity structure of the crust and uppermost mantle in southeastern Europe obtained from surface wave analysis. Stud Geophys Geod 51, 165–184 (2007). https://doi.org/10.1007/s11200-007-0008-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-007-0008-5

Keywords

Navigation