Skip to main content
Log in

Derivation of the CHAMP-only global gravity field model TUG-CHAMP04 applying the energy integral approach

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

A global gravity field model TUG-CHAMP04, derived from CHAMP (CHAllenging Minisatellite Payload) satellite-to-satellite GPS tracking observations in the high-low mode (SST-hl) in combination with CHAMP accelerometry, is presented and described in detail in this paper. For this purpose the energy integral approach was applied to precise kinematic orbits and accelerometer data. The advantage of these kinds of orbits is that they are derived from purely geometrical information, hence no external gravity field information is used for the determination of the positions. The disadvantage of precise kinematic orbit information is, that no velocities are delivered and hence a procedure has to be elaborated to deduce the velocities from kinematic positions. This work is done in preparation for ESA’s GOCE (Gravity field and steady state Ocean Circulation Explorer) satellite mission (scheduled launch November 2006), aiming at a high precision and high-resolution gravity field model on a global scale. This paper concentrates on the CHAMP data processing, where, in contrast to the usual standard method (processing in the Earth fixed frame), an approach in the inertial frame is chosen. Focus is taken on the data preprocessing of both accelerometer and orbit data, emphasising on the correct treatment of data-gaps and outlier detection. Furthermore an arc-wise weighting strategy is introduced and the advantages/disadvantages of this approach are discussed. Finally, the TUG-CHAMP04 model, calculated from one year of CHAMP data is compared with the official CHAMP gravity field model EIGEN-3p and terrestrial data (GPS levelling data).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arsov K., Badura T., Höck E., Pail R., Rothacher M. and Švehla D., 2002. Effect of Temporal Variations on High-Low SST observations. ESA Project “From Eötvös to mGal+”, Final Report, WP 4, ESA/ESTEC Contract 14287/00/NL/DC, European Space Agency, Noordwijk, The Netherlands, 217–319.

    Google Scholar 

  • Badura T., Klostius R. and Arsov K., 2004. WP Ib-4.2 Core Solver SST. WP 4-2, GOCE DAPC Final Report, ASAP-CO-008/03, Graz, Austria.

  • Bettadpur S.V. and Eanes, 1994. Geographical representation of radial orbit perturbations due to ocean tides-implications for satellite altimetry. J. Geophys. Res., 99(C12), 24883–24894.

  • ESA, 1999. Gravity Field and Steady-State Ocean Circulation Mission. Reports for mission selection, The four candidate Earth explorer core missions, SP-1233(1), European Space Agency, Noordwijk, The Netherlands.

    Google Scholar 

  • Förste Ch., 2002. Format Description: The CHAMP Data Format. Technical Document Nr.: CHGFZ-FD-001, CHAMP-Homepage, GFZ Potsdam, Germany.

  • Gerlach Ch., Sneeuw N., Visser P. and Švehla D., 2003. CHAMP gravity field recovery using the energy balance approach. Advances in Geosciences, 1, 73–80.

    Article  Google Scholar 

  • Heiskanen W. and Moritz H., 1967. Physical Geodesy. W.H. Freeman and Company, San Francsico, USA.

    Google Scholar 

  • Jekeli C., 1999. The determination of gravitational potential differences from satellite-tosatellite tracking. Celest. Mech. Dyn. Astron., 75, 85–101.

    Article  Google Scholar 

  • Lühr H., Grunwaldt L. and Förste Ch., 2002. CHAMP Reference Systems, Transformations and Standards. Technical Document Nr.: CH-GFZ-RS-002, CHAMP-Homepage, GFZ Potsdam, Germany.

  • Montenbruck O. and Gill E., 2000. Satellite Orbits-Models, Methods and Applications. Springer Verlag, Berlin, pp. 55, pp. 69–77.

    Book  Google Scholar 

  • O’Keefe J.A., 1957. An application of Jacobi’s integral to the motion of an Earth satellite. The Astronomival Journal, 62, 266–267.

    Google Scholar 

  • Reigber Ch., Schwintzer P. and Lühr H., 1999. CHAMP geopotential mission. Boll. Geofis. Teor. Appl., 40, 285–289.

    Google Scholar 

  • Reigber Ch., Lühr H. and Schwintzer P., 2003. First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies. Springer Verlag, Berlin, Germany.

    Book  Google Scholar 

  • Reigber Ch., Jochmann H., Wünsch J., Petrovic S., Schwintzer P., Barthelmes F., Neumayer K.-H., König R., Förste Ch., Balmino G., Biancale R., Lemoine J.-M., Loyer S. and Perosanz F., 2005. Earth gravity field and seasonal variability from CHAMP. In: Ch. Reigber, H. Lühr, P. Schwintzer and J. Wickert (Eds.), Earth Observation with CHAMP-Results from Three Years in Orbit, Springer Verlag, Berlin, Germany, 25–30.

    Chapter  Google Scholar 

  • Sakulin Ch., 2004. Gravity Field Recovery Applying the Energy Integral Approach to CHAMP POD & Accelerometry Data. Master Thesis, Graz University of Technology, Graz, Austria.

    Google Scholar 

  • Schuh W.-D., 1996. Tailored Numerical Solution Strategies for the Global Determination of the Earth’s Gravity Field. Mitteilung der geodätischen Institute der TU Graz, Folge 81, p. 32.

  • Seeber G., 1989. Satellitengeodäsie. de Gruyter, Berlin, Germany.

    Book  Google Scholar 

  • Shilov G.E., 1974. Elementary Functional Analysis. MIT Press, Cambridge, Massachusetts, USA.

    Google Scholar 

  • Smith D.A. and Roman D.R., 1999. Documentation for the GPS benchmark data set of August 27, 1999. National geodetic survey (NGS) paper, UGS, Silver Spring, USA.

    Google Scholar 

  • Standish E.M., 1998. JPL Planetary and Lunar Ephemerides, DE405/LE405, JPL IOM 312.F-98-048. JPL, Pasadena, USA.

    Google Scholar 

  • Švehla D. and Rothacher M., 2003. Kinematic and reduced-dynamic precise orbit determination of low Earth orbiters. Advances in Geosciences, 1, 47–56.

    Article  Google Scholar 

  • Vokrouhlicky D., 1989. The geomagnetic effects on the motion of an electrically charged artificial satellite. Celest. Mech. Dyn. Astron., 46, 85–104.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badura, T., Sakulin, C., Gruber, C. et al. Derivation of the CHAMP-only global gravity field model TUG-CHAMP04 applying the energy integral approach. Stud Geophys Geod 50, 59–74 (2006). https://doi.org/10.1007/s11200-006-0002-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-006-0002-3

Keywords

Navigation