Studia Geophysica et Geodaetica

, Volume 49, Issue 3, pp 323–342 | Cite as

Simulating strong ground motion from complex sources by reciprocal Green functions

  • L. Eisner
  • R. W. Clayton
Article

Abstract

We have developed a method to calculate site and path effects for complex heterogeneous media using synthetic Green’s functions. The Green’s functions are calculated numerically by imposing body forces at the site of interest and then storing the reciprocal Green’s functions along arbitrary finite-fault surfaces. By using reciprocal Green’s functions, we can then simulate many source scenarios for those faults because the primary numerical calculations need be done only once. The advantage of the proposed method is shown by evaluation of the site and path effects for three sites in the vicinity of the Los Angeles basin using the Southern California Velocity Model (version 2.2, Magistrale et al., 2000). In this example, we have simulated 300 source scenarios for 5 major southern California faults and compared their responses for period longer then 3 seconds at the selected sites. However, a more detailed comparison with strong motion records will be necessary before a particular hazard assessment can be made. For the tested source scenarios the results show that the variations in the peak velocity amplitudes and durations due to a source scenarios are as large as variations due to a heterogeneous velocity model.

Keywords

full waveform modeling seismic hazard finite source rupture propagation hazard assessment finite difference Los Angeles Basin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aagaard B., Hall J., Heaton T. and Eeri M., 2001. Characterization of near-source ground motions with earthquake simulations Earthquake Spectra, 17, 177–207.CrossRefGoogle Scholar
  2. Abercrombie R., 1997. Near-surface attenuation and site effects from comparison of surface and deep borehole recordings. Bull. Seismol. Soc. Amer., 87, 731–744.Google Scholar
  3. Aki K. and Richards P., 1980. Quantitative Seismology. W.H. Freeman and Co., San Francisco, USA.Google Scholar
  4. Bouchon M., Boulin M.-P., Karabulut H., Toksoz M., Dietrich M. and Rosakis A., 2001. How fast is rupture during and earthquake? new insights from the 1999 Turkey earthquakes. Geophys. Res. Lett., 28, 2723–2726.CrossRefGoogle Scholar
  5. Campbell K., 1997. Empirical near-source attenuation relationships for horizontal and vertical components of peak ground acceleration, peak ground velocity, and pseudo-absolute acceleration response spectra. Seism. Res. Lett., 68, 154–179.Google Scholar
  6. Eisner L. and Clayton R.W., 2001. A reciprocity method for multiple source simulations. Bull. Seismol. Soc. Amer., 91, 553–560.CrossRefGoogle Scholar
  7. Eisner L. and Clayton R.W., 2002a. A full waveform test of the southern california velocity model by the reciprocity method. Pure Appl. Geophys., 159, 1691–1706.CrossRefGoogle Scholar
  8. Eisner L. and Clayton R.W., 2002b. Equivalent medium parameters for numerical modelling in media with near-surface low-velocities. Bull. Seismol. Soc. Amer., 92, 711–722.CrossRefGoogle Scholar
  9. Field E. and the SCEC Phase III Working Group, 2000. Accounting for site effects in probabilistic seismic hazard analyses of Southern California: Overview of the SCEC Phase III report. Bull. Seismol. Soc. Amer., 90, S1–S31.CrossRefGoogle Scholar
  10. Graves R., 1996. Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bull. Seismol. Soc. Amer., 86, 1091–1106.Google Scholar
  11. Graves R., 1998. Three-Dimensional finite-difference modeling of the San Andreas fault: Source parameterization and ground-motion levels. Bull. Seismol. Soc. Amer., 88, 881–897.Google Scholar
  12. Graves R. and Wald D., 2001. Resolution analysis of finite fault source inversion using 1D and 3D Green’s functions, part I: Strong motions. J. Geophys. Res., 106, 8745–8766.CrossRefGoogle Scholar
  13. Hough S., 1997. Empirical Green’s function analysis: Taking the next step. J. Geophys. Res., 102, 5369–5384.CrossRefGoogle Scholar
  14. Ibanez J., Morales J., DeMiguel F., Vidal F., Alguacil G. and Posadas A., 1991. Effect of a sedimentary basin on estimations of q c and q Lg. Phys. Earth Planet. Inter., 66, 244–252.CrossRefGoogle Scholar
  15. Ji C., Wald D. and Helmberger D., 2001. Source description of the 1999 Hector Mine, California, earthquake; Part II: Complexity of slip history. Bull. Seismol. Soc. Amer., 92, 1208–1226.CrossRefGoogle Scholar
  16. Kramer S., 1996. Geotechnical Earthquake Engineering. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.Google Scholar
  17. Liu P. and Archuleta R., 2000. A preliminary finite fault inversion of the 1999 M7.7 Chi Chi, Taiwan earthquake using 3-d Greens functions. EOS AGU Trans., 81, F874.Google Scholar
  18. Ma K., Mori J., Lee S. and Yu S., 2001. Spatial and temporal distribution of slip for the 1999 Chichi, Taiwan, earthquake. Bull. Seismol. Soc. Amer., 91, 1069–1087.CrossRefGoogle Scholar
  19. Ma K.-F. and Kanamori H., 1994. Broadband waveform observation of the 28 June 1991 Sierra-Madre earthquake sequence (M(l) = 5.8). Bull. Seismol. Soc. Amer., 84, 1725–1738.Google Scholar
  20. Magistrale H., Day S., Clayton R. and Graves R., 2000. The SCEC Southern California Reference 3D Seismic Velocity Model Version 2. Bull. Seismol. Soc. Amer., 90, S65–S76.Google Scholar
  21. Olsen K., 2000. Site amplification in the Los Angeles basin from three-dimensional modeling of ground motion. Bull. Seismol. Soc. Amer., 90, 677–685.Google Scholar
  22. Olsen K. and Archuleta R., 1996. Three-dimensional simulation of earthquakes on the Los Angeles fault system. Bull. Seismol. Soc. Amer., 86, 575–596.Google Scholar
  23. Petersen M., Bryant W., Cramer C., Cao T., Riechle M., Frankel A., Lienkaemper J., McCrory P. and Schwartz D., 1996. Probabilistic Seismic Hazard Assessment for the State of California. Technical Report, Division of Mines and Geology, open-file report 96-08; United States Geological Survey; open-file report 96-706.Google Scholar
  24. Somerville P., Irikura K., Graves R., Sawada S., Wald D., Abrahamson N., Iwasaki Y., Kagawa T., Smith N. and Kowada A., 1999. Characterizing crustal earthquake slip models for the prediction of strong ground motion. Seism. Res. Lett., 70, 59–80.Google Scholar
  25. Spudich P., 1981. Frequency domain calculation of extended source seismograms. EOS Trans. AGU, 62, 960.Google Scholar
  26. Su F., Anderson J. and Zeng Y., 1988. Study of weak and strong ground motion including nonlinearity from the Northridge, California, earthquake sequence. Bull. Seismol. Soc. Amer., 88, 1411–1425.Google Scholar
  27. Trifunac M. and Brady A.G., 1975. A study of the duration of strong ground earthquake ground motion. Bull. Seismol. Soc. Amer. 65, 581–626.Google Scholar
  28. Vidale J., 1988. Finite-difference calculation of travel-times. Bull. Seismol. Soc. Amer., 78, 2062–2076.Google Scholar
  29. Wald D. and Graves R., 1998. The seismic response of the Los Angeles basin, California. Bull. Seismol. Soc. Amer., 88, 337–356.Google Scholar
  30. Wald D. and Heaton T., 1994. Spatial and temporal distribution of slip for the 1992 Landers, California, earthquake. Bull. Seismol. Soc. Amer., 84, 668–691.Google Scholar
  31. Wald D., Heaton T. and Hudnut K., 1996. The slip history of the 1994 Northridge, California, earthquake determined from strong-motion, teleseismic, GPS, and leveling data. Bull. Seismol. Soc. Amer., 86, S49–S70.Google Scholar
  32. Wells D. and Coppersmith K., 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Amer., 84, 974–1002.Google Scholar
  33. Wessel P. and Smith W., 1991. Free software helps map and display data. EOS Trans. AGU, 72, 441.Google Scholar

Copyright information

© StudiaGeo s.r.o. 2005

Authors and Affiliations

  • L. Eisner
    • 1
  • R. W. Clayton
    • 1
  1. 1.Seismological LaboratoryCalifornia Institute of TechnologyPasadenaU.S.A.
  2. 2.Schlumberger Cambridge Research CenterCambridgeU.K.

Personalised recommendations