Breiner, J. M., Harkness, S. S., Johnson, C. C., & Koehler, C. M. (2012). What is STEM? A discussion about conceptions of STEM in education and partnerships. School Science and Mathematics, 112, 3–11. https://doi.org/10.1111/j.1949-8594.2011.00109.x.
Article
Google Scholar
Casey, M. B., Nuttall, R. L., & Pezaris, E. (1997). Mediators of gender differences in mathematics college entrance test scores: A comparison of spatial skills with internalized beliefs and anxieties. Developmental Psychology, 33(4), 669–680. https://doi.org/10.1037/0012-1649.33.4.669.
Article
PubMed
Google Scholar
Ceci, S. J., Williams, W. M., & Barnett, S. M. (2009). Women's underrepresentation in science: Sociocultural and biological considerations. Psychological Bulletin, 135(2), 218–261. https://doi.org/10.1037/a0014412.
Article
PubMed
Google Scholar
Chhin, C. S., Bleeker, M. M., & Jacobs, J. E. (2008). Gender-typed occupational choices: The long-term impact of parents' beliefs and expectations. In H. G. Watt & J. S. Eccles (Eds.), Gender and occupational outcomes: Longitudinal assessments of individual, social, and cultural influences (pp. 215–234). Washington, DC: American Psychological Association. https://doi.org/10.1037/11706-008.
Chapter
Google Scholar
Dasgupta, N., & Stout, J. G. (2014). Girls and women in science, technology, engineering, and mathematics: STEMing the tide and broadening participation in STEM careers. Policy Insights From the Behavioral and Brain Sciences, 1, 21–29. https://doi.org/10.1177/2372732214549471.
Article
Google Scholar
Eccles, J. S. (2007). Families, schools, and developing achievement-related motivations and engagement. In J. E. Grusec & P. D. Hastings (Eds.), Handbook of socialization: Theory and research (pp. 665–691). New York: Guilford Press.
Google Scholar
Eccles, J. (1983). Expectancies, values and academic behaviors. In J. T. Spence (Ed.), Achievement and achievement motives: Psychological and sociological approaches (pp. 75–146). San Francisco: W.H. Freeman.
Eccles, J. S., Arberton, A., Buchanan, C. M., Janis, J., Flanagan, C., & Harold, R. (1993a). School and family effects on the ontogeny of children’s interests, self-perceptions, and activity choices. In J. E. Jacobs (Ed.), Nebraska symposium on motivation, 1992: Developmental perspectives on motivation (Vol. 40, pp. 145–208). Lincoln: University of Nebraska Press.
Google Scholar
Eccles, J. S., Jacobs, J. E., Harold, R. D., Yoon, K. S., Abreton, A., & Freedman-Doan, C. (1993b). Parents and gender-role socialization during the middle childhood and adolescent years. In S. Oskamp & M. Costanzo (Eds.), Gender issues in contemporary society (Vol. 6, pp. 59–83). Thousand Oaks: Sage Publications.
Google Scholar
Fiorella, L., & Mayer, R. E. (2017). Spontaneous spatial strategy use in learning from scientific text. Contemporary Educational Psychology, 49, 66–79. https://doi.org/10.1016/j.cedpsych.2017.01.002.
Article
Google Scholar
Frome, P. M., & Eccles, J. S. (1998). Parents' influence on children's achievement-related perceptions. Journal of Personality and Social Psychology, 74(2), 435–452. https://doi.org/10.1037/0022-3514.74.2.435.
Article
PubMed
Google Scholar
Furnham, A. (2000). Parents' estimates of their own and their children's multiple intelligences. British Journal of Developmental Psychology, 18(4), 583–594. https://doi.org/10.1348/026151000165869.
Article
Google Scholar
Furnham, A., & Thomas, C. (2004). Parents' gender and personality and estimates of their own and their children's intelligence. Personality and Individual Differences, 37(5), 887–903. https://doi.org/10.1016/j.paid.2003.10.011.
Article
Google Scholar
Furnham, A., Reeves, E., & Budhani, S. (2002). Parents think their sons are brighter than their daughters: Sex differences in parental self-estimations and estimations of their children's multiple intelligences. The Journal of Genetic Psychology, 163(1), 24–39. https://doi.org/10.1080/00221320209597966.
Article
PubMed
Google Scholar
Gladstone, J. R., Häfner, I., Turci, L. A., Kneißler, H., & Muenks, K. (2018). Associations between parents’ and students’ motivational beliefs in mathematics and mathematical performance: The role of gender. Contemporary Educational Psychology, 54, 221–234.
Article
Google Scholar
Gliem, J. A., & Gliem, R. R. (2003, October). Calculating, interpreting, and reporting Cronbach’s alpha reliability coefficient for Likert-type scales. Paper presented at the Midwest Research-to-Practice Conference in Adult, Continuing, and Community Education, Columbus, Ohio.
Gogol, K., Brunner, M., Goetz, T., Martin, R., Ugen, S., Keller, U., … Preckel, F. (2014). “My questionnaire is too long!” the assessments of motivational-affective constructs with three-item and single-item measures. Contemporary Educational Psychology, 39, 188–205. https://doi.org/10.1016/j.cedpsych.2014.04.002.
Article
Google Scholar
Goldman, R. D., & Hewitt, B. N. (1976). The scholastic aptitude test “explains” why college men major in science more often than college women. Journal of Counseling Psychology, 23(1), 50–54. https://doi.org/10.1037/0022-0167.23.1.50.
Article
Google Scholar
Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2012). The relation between spatial skill and early number knowledge: The role of the linear number line. Developmental Psychology, 48(5), 1229–1241. https://doi.org/10.1037/a0027433.
Article
PubMed
Google Scholar
Hall, C., Dickerson, J., Batts, D., Kauffmann, P., & Bosse, M. (2011). Are we missing opportunities to encourage interest in STEM fields? Journal of Technology Education, 23, 32–46. https://doi.org/10.21061/jte.v23i1.a.4.
Article
Google Scholar
Halpern, D. F. (2013). Sex differences in cognitive abilities (4th ed.). New York: Psychology Press.
Book
Google Scholar
Halpern, D. F., Straight, C. A., & Stephenson, C. L. (2011). Beliefs about cognitive gender differences: Accurate for direction, underestimated for size. Sex Roles, 64(5–6), 336–347. https://doi.org/10.1007/s11199-010-9891-2.
Article
Google Scholar
Harackiewicz, J. M., Rozek, C. S., Hulleman, C. S., & Hyde, J. S. (2012). Helping parents to motivate adolescents in mathematics and science: An experimental test of a utility-value intervention. Psychological Science, 23(8), 899–906. https://doi.org/10.1177/0956797611435530.
Article
PubMed
Google Scholar
Hayes, A. F. (2012). PROCESS: A versatile computational tool for observed variable mediation, moderation, and conditional process modeling [white paper]. Retrieved from http://www.afhayes.com/ public/process2012.Pdf
Hyde, J. S. (2014). Gender similarities and differences. Annual Review of Psychology, 65, 373–398. https://doi.org/10.1146/annurev-psych-010213-115057.
Article
PubMed
Google Scholar
Hyde, J. S. (2016). Sex and cognition: Gender and cognitive functions. Current Opinion in Neurobiology, 38, 53–56. https://doi.org/10.1016/j.conb.2016.02.007.
Article
PubMed
Google Scholar
Ing, M. (2014). Can parents influence children’s mathematics achievement and persistence in STEM careers? Journal of Career Development, 41(2), 87–103. https://doi.org/10.1177/0894845313481672.
Article
Google Scholar
Jansen, P., Schmelter, A., Quaiser-Pohl, C., Neuburger, S., & Heil, M. (2013). Mental rotation performance in primary school age children: Are there gender differences in chronometric tests? Cognitive Development, 28(1), 51–62.
Article
Google Scholar
Lazarides, R., Harackiewicz, J. M., Canning, E., Pesu, L., & Viljaranta, J. (2015). The role of parents in students' motivational beliefs and values. In C. M. Rubie-Davies, J. M. Stephens, & P. Watson (Eds.), The Routledge international handbook of social psychology of the classroom (pp. 53–66). London: Routledge.
Google Scholar
Levine, S. C., Foley, A., Lourenco, S., Ehrlich, S., & Ratliff, K. (2016). Sex differences in spatial cognition: Advancing the conversation. Wiley Interdisciplinary Reviews. Cognitive Science, 7(2), 127–155. https://doi.org/10.1002/wcs.1380.
Article
PubMed
Google Scholar
Lubinski, D. (2010). Spatial ability and STEM: A sleeping giant for talent identification and development. Personality and Individual Differences, 49, 344–351. https://doi.org/10.1016/j.paid.2010.03.022.
Article
Google Scholar
Lyons, I. M., Ramirez, G., Maloney, E. A., Rendina, D. N., Levine, S. C., & Beilock, S. L. (2018). Spatial anxiety: A novel questionnaire with subscales for measuring three aspects of spatial anxiety. Journal of Numerical Cognition, 4, 526–553. https://doi.org/10.5964/jnc.v4i3.154.
Article
Google Scholar
Maeda, Y., & Yoon, S. Y. (2013). A meta-analysis on gender differences in mental rotation ability measured by the Purdue spatial visualization tests: Visualization of rotations (PSVT: R). Educational Psychology Review, 25(1), 69–94. https://doi.org/10.1007/s10648-012-9215-x.
Article
Google Scholar
Maltese, A. V., & Tai, R. H. (2011). Pipeline persistence: Examining the association of educational experiences with earned degrees in STEM among U.S. students. Science Education, 95, 877–907. https://doi.org/10.1002/sce.20441.
Article
Google Scholar
Miller, D. I., & Halpern, D. F. (2013). Can spatial training improve long-term outcomes for gifted STEM undergraduates? Learning and Individual Differences, 26, 141–152. https://doi.org/10.1016/j.lindif.2012.03.012.
Article
Google Scholar
Moakler Jr., M. W., & Kim, M. M. (2014). College major choice in STEM: Revisiting confidence and demographic factors. The Career Development Quarterly, 62(2), 128–142. https://doi.org/10.1002/j.2161-0045.2014.00075.x.
Article
Google Scholar
National Research Council. (2006). Learning to think spatially. Washington, DC: The National Academies Press. https://doi.org/10.17226/11019.
Book
Google Scholar
National Research Council. (2014). Advancing diversity in the US industrial science and engineering workforce. Washington, DC: The National Academies Press. https://doi.org/10.17226/13512.
Book
Google Scholar
National Science Board. (2015). Revisiting the STEM workforce: A companion to Science and Engineering Indicators 2014. Arlington: National Science Foundation (NSB-2015-10).
Google Scholar
Newcombe, N. S. (2016). Thinking spatially in the science classroom. Current Opinion in Behavioral Sciences, 10, 1–6. https://doi.org/10.1016/j.cobeha.2016.04.010.
Article
Google Scholar
Newcombe, N. S., Levine, S. C., & Mix, K. S. (2015). Thinking about quantity: The intertwined development of spatial and numerical cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 6(6), 491–505. https://doi.org/10.1002/wcs.1369.
Article
PubMed
Google Scholar
Parsons, J. E., Adler, T. F., & Kaczala, C. M. (1982). Socialization of achievement attitudes and beliefs: Parental influences. Child Development, 53(2), 310–321. https://doi.org/10.2307/1128973.
Article
Google Scholar
Pesu, L. A., Aunola, K., Viljaranta, J., & Nurmi, J. E. (2016). The development of adolescents’ self-concept of ability through grades 7-9 and the role of parental beliefs. Frontline Learning Research, 4, 92–109. https://doi.org/10.14786/flr.v4i3.249.
Article
Google Scholar
Peters, M., & Battista, C. (2008). Applications of mental rotation figures of the Shepard and Metzler type and description of a mental rotation stimulus library. Brain and Cognition, 66(3), 260–264. https://doi.org/10.1016/j.bandc.2007.09.003.
Article
PubMed
Google Scholar
Poon, W. Y., Leung, K., & Lee, S. Y. (2002). The comparison of single item constructs by relative mean and relative variance. Organizational Research Methods, 5(3), 275–298. https://doi.org/10.1177/1094428102005003005.
Article
Google Scholar
Reilly, D., & Neumann, D. L. (2013). Gender-role differences in spatial ability: A meta-analytic review. Sex Roles, 68(9–10), 521–535. https://doi.org/10.1007/s11199-013-0269-0.
Article
Google Scholar
Rozek, C. S., Svoboda, R. C., Harackiewicz, J. M., Hulleman, C. S., & Hyde, J. S. (2017). Utility-value intervention with parents increases students’ STEM preparation and career pursuit. Proceedings of the National Academy of Sciences, 114(5), 909–914. https://doi.org/10.1073/pnas.1607386114.
Article
Google Scholar
Shea, D. L., Lubinski, D., & Benbow, C. P. (2001). Importance of assessing spatial ability in intellectually talented young adolescents: A 20-year longitudinal study. Journal of Educational Psychology, 93(3), 604–614. https://doi.org/10.1037/0022-0663.93.3.604.
Article
Google Scholar
Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171, 701–703. https://doi.org/10.1126/science.171.3972.701.
Article
Google Scholar
Simpkins, S. D., Davis-Kean, P. E., & Eccles, J. S. (2006). Math and science motivation: A longitudinal examination of the links between choices and beliefs. Developmental Psychology, 42(1), 70–83. https://doi.org/10.1037/0012-1649.42.1.70.
Article
PubMed
Google Scholar
Simpkins, S. D., Fredricks, J. A., & Eccles, J. S. (2012). Charting the Eccles' expectancy-value model from mothers' beliefs in childhood to youths' activities in adolescence. Developmental Psychology, 48, 1019–1032. https://doi.org/10.1037/a0027468.
Article
PubMed
Google Scholar
Sonnert, G. (2009). Parents who influence their children to become scientists: Effects of gender and parental education. Social Studies of Science, 39, 927–941. https://doi.org/10.1177/0306312709335843.
Article
PubMed
Google Scholar
Stieff, M., Dixon, B. L., Ryu, M., Kumi, B. C., & Hegarty, M. (2014). Strategy training eliminates sex differences in spatial problem solving in a stem domain. Journal of Educational Psychology, 106(2), 390–402. https://doi.org/10.1037/a0034823.
Article
Google Scholar
Syzmanowicz, A., & Furnham, A. (2011). Gender differences in self-estimates of general, mathematical, spatial and verbal intelligence: Four meta analyses. Learning and Individual Differences, 21, 493–504. https://doi.org/10.1016/j.lindif.2011.07.001.
Article
Google Scholar
Szymanowicz, A., & Furnham, A. (2013). Gender and gender role differences in self- and other-estimates of multiple intelligences. The Journal of Social Psychology, 153, 399–423. https://doi.org/10.1080/00224545.2012.754397.
Article
PubMed
PubMed Central
Google Scholar
Tiedemann, J. (2000). Parents' gender stereotypes and teachers' beliefs as predictors of children's concept of their mathematical ability in elementary school. Journal of Educational Psychology, 92(1), 144–151. https://doi.org/10.1037/0022-0663.92.1.144.
Article
Google Scholar
Tosto, M. G., Hanscombe, K. B., Haworth, C., Davis, O. S., Petrill, S. A., Dale, P. S., … Kovas, Y. (2014). Why do spatial abilities predict mathematical performance? Developmental Science, 17(3), 462–470. https://doi.org/10.1111/desc.12138
Uttal, D. H., & Cohen, C. A. (2012). Spatial thinking and STEM education: When, why, and how? Psychology of Learning and Motivation, 57, 147–181. https://doi.org/10.1016/B978-0-12-394293-7.00004-2.
Article
Google Scholar
Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., … Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139(2), 352–402. https://doi.org/10.1037/a0028446
Ventura, M., Shute, V., Wright, T. J., & Zhao, W. (2013). An investigation of the validity of the virtual spatial navigation assessment. Frontiers in Psychology, 4, 1–7. https://doi.org/10.3389/fpsyg.2013.00852.
Article
Google Scholar
Voyer, D., Voyer, S. D., & Saint-Aubin, J. (2017). Sex differences in visual-spatial working memory: A meta-analysis. Psychonomic Bulletin & Review, 24(2), 307–334. https://doi.org/10.3758/s13423-016-1085-7.
Article
Google Scholar
Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817–835. https://doi.org/10.1037/a0016127.
Article
Google Scholar
Walter, E., & Dassonville, P. (2011). Activation in a frontoparietal cortical network underlies individual differences in the performance of an embedded figures task. PLoS One, 6(7), e20742. https://doi.org/10.1371/journal.pone.0020742.
Article
PubMed
PubMed Central
Google Scholar
Wang, X. (2013). Why students choose STEM majors: Motivation, high school learning, and postsecondary context of support. American Educational Research Journal, 50(5), 1081–1121. https://doi.org/10.3102/0002831213488622.
Article
Google Scholar
Watt, H. M., Hyde, J. S., Petersen, J., Morris, Z. A., Rozek, C. S., & Harackiewicz, J. M. (2017). Mathematics—A critical filter for STEM-related career choices? A longitudinal examination among Australian and US adolescents. Sex Roles, 77, 254–271. https://doi.org/10.1007/s11199-016-0711-1.
Article
Google Scholar
West, S. G., Finch, J. F., & Curran, P. J. (1995). Structural equation models with nonnormal variables: Problems and remedies. In R. H. Hoyle (Ed.), Structural equation modeling: Concepts, issues and applications (pp. 56–75). Newbery Park: Sage.
Google Scholar
Wigfield, A., & Eccles, J. S. (2000). Expectancy–value theory of achievement motivation. Contemporary Educational Psychology, 25, 68–81. https://doi.org/10.1006/ceps.1999.1015.
Article
PubMed
Google Scholar
Willis, G. B. (2004). Cognitive interviewing: A tool for improving questionnaire design. Thousand Oaks: Sage Publications.
Google Scholar
Yee, D. K., & Eccles, J. S. (1988). Parent perceptions and attributions for children's math achievement. Sex Roles, 19(5–6), 317–333. https://doi.org/10.1007/BF00289840.
Article
Google Scholar
Yoon, S. Y., & Mann, E. L. (2017). Exploring the spatial ability of undergraduate students: Association with gender, STEM majors, and gifted program membership. Gifted Child Quarterly, 61(4), 313–327. https://doi.org/10.1177/0016986217722614.
Article
Google Scholar
Zhang, X., Hu, B. Y., Ren, L., & Fan, X. (2017). Pathways to reading, mathematics, and science: Examining domain-general correlates in young Chinese children. Contemporary Educational Psychology, 51, 366–377. https://doi.org/10.1016/j.cedpsych.2017.09.004.
Article
Google Scholar