Prejudice against Women Leaders: Insights from an Indirect Questioning Approach

Abstract

To avoid social disapproval in studies on prejudice against women leaders, participants might provide socially desirable rather than truthful responses. Using the Crosswise Model, an indirect questioning technique that can be applied to control for socially desirable responding, we investigated the prevalence of prejudice against women leaders in a German university community sample of 1529 participants. Prevalence estimates that were based on an indirect question that guaranteed confidentiality of responses were higher than estimates that were based on a direct question. Prejudice against women leaders was thus shown to be more widespread than previously indicated by self-reports that were potentially biased by social desirability. Whereas women showed less prejudice against women leaders, their responses were actually found to be more biased by social desirability, as indicated by a significant interaction between questioning technique and participants’ gender. For men, prejudice estimates increased only slightly from 36% to 45% when an indirect question was used, whereas for women, prejudice estimates almost tripled from 10% to 28%. Whereas women were particularly hesitant to provide negative judgments regarding the qualities of women leaders, prejudice against women leaders was more prevalent among men even when gender differences in social desirability were controlled. Taken together, the results highlight the importance of controlling for socially desirable responding when using self-reports to investigate the prevalence of gender prejudice.

This is a preview of subscription content, log in to check access.

References

  1. Allport, G. W. (1979). The nature of prejudice (25th ed.). New York: Perseus Books.

    Google Scholar 

  2. Ayman, R., & Korabik, K. (2010). Leadership: Why gender and culture matter. American Psychologist, 65, 157–170. https://doi.org/10.1037/a0018806.

    Article  PubMed  Google Scholar 

  3. Batchelder, W. H. (1998). Multinomial processing tree models and psychological assessment. Psychological Assessment, 10, 331–344. https://doi.org/10.1037/1040-3590.10.4.331.

    Article  Google Scholar 

  4. Batchelder, W. H., & Riefer, D. M. (1999). Theoretical and empirical review of multinomial process tree modeling. Psychonomic Bulletin & Review, 6, 57–86. https://doi.org/10.3758/Bf03210812.

    Article  Google Scholar 

  5. Berufsverband Deutscher Psychologinnen und Psychologen, & Deutsche Gesellschaft für Psychologie. (2016). Berufsethische Richtlinien des Berufsverbandes Deutscher Psychologinnen und Psychologen e.V. und der Deutschen Gesellschaft für Psychologie e.V. Retrieved from https://www.dgps.de/fileadmin/documents/Empfehlungen/berufsethische_richtlinien_dgps.pdf. Accessed 10 September 2018.

  6. Biernat, M. (2003). Toward a broader view of social stereotyping. American Psychologist, 58, 1019–1027. https://doi.org/10.1037/0003-066x.58.12.1019.

    Article  PubMed  Google Scholar 

  7. Biernat, M. (2012). Stereotypes and shifting standards: Forming, communicating, and translating person impressions. In P. Devine & A. Plant (Eds.), Advances in experimental social psychology (pp. 1–59). San Diego: Elsevier.

    Google Scholar 

  8. Biernat, M., Crandall, C. S., Young, L. V., Kobrynowicz, D., & Halpin, S. M. (1998). All that you can be: Stereotyping of self and others in a military context. Journal of Personality and Social Psychology, 75, 301–317. https://doi.org/10.1037/0022-3514.75.2.301.

    Article  PubMed  Google Scholar 

  9. Biernat, M., Manis, M., & Nelson, T. E. (1991). Stereotypes and standards of judgment. Journal of Personality and Social Psychology, 60, 485–499. https://doi.org/10.1037//0022-3514.60.4.485.

    Article  Google Scholar 

  10. Blanton, H., Jaccard, J., Christie, C., & Gonzales, P. M. (2007). Plausible assumptions, questionable assumptions and post hoc rationalizations: Will the real IAT, please stand up? Journal of Experimental Social Psychology, 43, 399–409. https://doi.org/10.1016/j.jesp.2006.10.019.

    Article  Google Scholar 

  11. Blanton, H., Jaccard, J., Gonzales, P. M., & Christe, C. (2006). Decoding the implicit association test: Implications for criterion prediction. Journal of Experimental Social Psychology, 42, 192–212. https://doi.org/10.1016/j.jesp.2005.07.003.

    Article  Google Scholar 

  12. Bligh, M. C., Schlehofer, M. M., Casad, B. J., & Gaffney, A. M. (2012). Competent enough, but would you vote for her? Gender stereotypes and media influences on perceptions of women politicians. Journal of Applied Social Psychology, 42, 560–597. https://doi.org/10.1111/j.1559-1816.2011.00781.x.

    Article  Google Scholar 

  13. Bosak, J., & Sczesny, S. (2011). Gender Bias in leader selection? Evidence from a hiring simulation study. Sex Roles, 65, 234–242. https://doi.org/10.1007/s11199-011-0012-7.

    Article  Google Scholar 

  14. Buschle, N., & Hähnel, S. (2016). Hochschulen auf einen Blick: Ausgabe 2016 [graduate schools at a glance: 2016 edition]. Wiesbaden: German Federal Statistical Office.

    Google Scholar 

  15. Deaux, K., & Lewis, L. L. (1984). Structure of gender stereotypes - interrelationships among components and gender label. Journal of Personality and Social Psychology, 46, 991–1004. https://doi.org/10.1037/0022-3514.46.5.991.

    Article  Google Scholar 

  16. Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via Em algorithm. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 39, 1–38.

    Google Scholar 

  17. Dovidio, J. F., Hewstone, M., Glick, P., & Esses, V. M. (2010). Prejudice, stereotyping and discrimination. London: Sage.

    Google Scholar 

  18. Eagly, A. H. (1987). Sex differences in social behavior: A social-role interpretation. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  19. Eagly, A. H., & Carli, L. L. (2003). The female leadership advantage: An evaluation of the evidence. Leadership Quarterly, 14, 807–834. https://doi.org/10.1016/j.leaqua.2003.09.004.

    Article  Google Scholar 

  20. Eagly, A. H., & Karau, S. J. (2002). Role congruity theory of prejudice toward female leaders. Psychological Review, 109, 573–598. https://doi.org/10.1037//0033-295X.109.3.573.

    Article  Google Scholar 

  21. Eagly, A. H., & Wood, W. (2012). Social role theory. In P. A. M. Van Lange, A. W. Kruglanski, & E. T. Higgins (Eds.), Handbook of theories in social psychology (2nd ed., pp. 458–476). Thousand Oaks, CA: Sage.

    Google Scholar 

  22. Eagly, A. H., Wood, W., & Diekman, A. B. (2000). Social role theory of sex differences and similarities: A current appraisal. In T. Eckes & H. M. Trautner (Eds.), The developmental social psychology of gender (pp. 123–174). Mahwah, NJ: Erlbaum.

    Google Scholar 

  23. Elsesser, K. M., & Lever, J. (2011). Does gender bias against female leaders persist? Quantitative and qualitative data from a large-scale survey. Human Relations, 64, 1555–1578. https://doi.org/10.1177/0018726711424323.

    Article  Google Scholar 

  24. Endendijk, J. J., Groeneveld, M. G., van Berkel, S. R., Hallers-Haalboom, E. T., Mesman, J., & Bakermans-Kranenburg, M. J. (2013). Gender stereotypes in the family context: Mothers, fathers, and siblings. Sex Roles, 68, 577–590. https://doi.org/10.1007/s11199-013-0265-4.

    Article  Google Scholar 

  25. Garcia-Retamero, R., & López-Zafra, E. (2006). Prejudice against women in male-congenial environments: Perceptions of gender role congruity in leadership. Sex Roles, 55, 51–61. https://doi.org/10.1007/s11199-006-9068-1.

    Article  Google Scholar 

  26. Garcia-Retamero, R., Müller, S. M., & López-Zafra, E. (2011). The malleability of gender stereotypes: Influence of population size on perceptions of men and women in the past, present, and future. Journal of Social Psychology, 151, 635–656. https://doi.org/10.1080/00224545.2010.522616.

    Article  PubMed  Google Scholar 

  27. German Federal Statistical Office. (2016a). Facts and figures, Indicators. Quality of employment: Women in managerial occupations. Retrieved fromhttps://www.destatis.de/EN/FactsFigures/Indicators/QualityEmployment/QualitaetEmployment.html. Accessed 2 November 2016.

  28. German Federal Statistical Office. (2016b). State & Society. Institutions of higher education: Education. Retrieved from https://www.destatis.de/EN/FactsFigures/Indicators/LongTermSeries/Education/lrbil01.html. Accessed 2 November 2016.

  29. Greenwald, A. G., Nosek, B. A., & Banaji, M. R. (2003). Understanding and using the implicit association test: I. an improved scoring algorithm. Journal of Personality and Social Psychology, 85, 197–216. https://doi.org/10.1037/0022-3514.85.2.197.

    Article  Google Scholar 

  30. Haines, E. L., Deaux, K., & Lofaro, N. (2016). The times they are a-changing ... Or are they not? A comparison of gender stereotypes, 1983-2014. Psychology of Women Quarterly, 40, 353–363. https://doi.org/10.1177/0361684316634081.

    Article  Google Scholar 

  31. Heilman, M. E. (2012). Gender stereotypes and workplace bias. Research in Organizational Behavior: An Annual Series of Analytical Essays and Critical Reviews, 32, 113–135. https://doi.org/10.1016/j.riob.2012.11.003.

    Article  Google Scholar 

  32. Hoffmann, A., Diedenhofen, B., Verschuere, B. J., & Musch, J. (2015). A strong validation of the crosswise model using experimentally induced cheating behavior. Experimental Psychology, 62, 403–414. https://doi.org/10.1027/1618-3169/a000304.

    Article  PubMed  Google Scholar 

  33. Hoffmann, A., & Musch, J. (2016). Assessing the validity of two indirect questioning techniques: A stochastic lie detector versus the crosswise model. Behavior Research Methods, 48, 1032–1046. https://doi.org/10.3758/s13428-015-0628-6.

    Article  PubMed  Google Scholar 

  34. Hoffmann, A., Waubert de Puiseau, B., Schmidt, A. F., & Musch, J. (2017). On the comprehensibility and perceived privacy protection of indirect questioning techniques. Behavior Research Methods, 49, 1470–1483. https://doi.org/10.3758/s13428-016-0804-3.

    Article  PubMed  Google Scholar 

  35. Höglinger, M., & Diekmann, A. (2017). Uncovering a blind spot in sensitive question research: False positives undermine the crosswise-model RRT. Political Analysis, 25, 131–137. https://doi.org/10.1017/pan.2016.5.

    Article  Google Scholar 

  36. Holst, E., Busch-Heizmann, A., & Wieber, A. (2015). Führungskräfte-Monitor 2015. Update 2001–2013 [Manager monitor 2015 . Update 2001–2013]. Berlin: Deutsches Institut für Wirtschaftsforschung.

  37. Hu, X., & Batchelder, W. H. (1994). The statistical-analysis of general processing tree models with the Em algorithm. Psychometrika, 59, 21–47. https://doi.org/10.1007/Bf02294263.

    Article  Google Scholar 

  38. Jann, B., Jerke, J., & Krumpal, I. (2012). Asking sensitive questions using the crosswise model. Public Opinion Quarterly, 76, 32–49. https://doi.org/10.1093/Poq/Nfr036.

    Article  Google Scholar 

  39. Kark, R., & Eagly, A. H. (2010). Gender and leadership: Negotiating the labyrinth. In J. C. Chrisler & D. R. McCreary (Eds.), Handbook of gender research in psychology (Vol. 2: Gender Research in Social and Applied Psychology, pp. 443–468). New York: Springer.

    Google Scholar 

  40. Kite, M. E., Deaux, K., & Haines, E. L. (2008). Gender Stereotypes. In F. L. Denmark & M. A. Paludi (Eds.), Psychology of women: A handbook of issues and theories (2nd ed., pp. 205–236). Westport: Praeger.

  41. Knapp, B. R., & Batchelder, W. H. (2004). Representing parametric order constraints in multi-trial applications of multinomial processing tree models. Journal of Mathematical Psychology, 48, 215–229. https://doi.org/10.1016/j.jmp.2004.03.002.

    Article  Google Scholar 

  42. Korndörfer, M., Krumpal, I., & Schmukle, S. C. (2014). Measuring and explaining tax evasion: Improving self-reports using the crosswise model. Journal of Economic Psychology, 45, 18–32. https://doi.org/10.1016/j.joep.2014.08.001.

    Article  Google Scholar 

  43. Kundt, T. C., Misch, F., & Nerré, B. (2016). Re-assessing the merits of measuring tax evasion through business surveys: An application of the crosswise model. International Tax and Public Finance,  1–22. https://doi.org/10.1007/s10797-015-9373-0.

  44. Latu, I. M., Stewart, T. L., Myers, A. C., Lisco, C. G., Estes, S. B., & Donahue, D. K. (2011). What we "say" and what we "think" about female managers: Explicit versus implicit associations of women with success. Psychology of Women Quarterly, 35, 252–266. https://doi.org/10.1177/0361684310383811.

    Article  Google Scholar 

  45. Leatherwood, L., & Mitch, W. (2008). Gender and career paths. Journal of Women in Educational Leadership, 15, 261–273.

    Google Scholar 

  46. López-Zafra, E., & Garcia-Retamero, R. (2011). The impact of nontraditionalism on the malleability of gender stereotypes in Spain and Germany. International Journal of Psychology, 46, 249–258. https://doi.org/10.1080/00207594.2010.551123.

    Article  Google Scholar 

  47. Moshagen, M. (2010). multiTree: A computer program for the analysis of multinomial processing tree models. Behavior Research Methods, 42, 42–54.

    Article  PubMed  Google Scholar 

  48. Moshagen, M., Hilbig, B. E., & Musch, J. (2011). Defection in the dark? A randomized-response investigation of cooperativeness in social dilemma games. European Journal of Social Psychology, 41, 638–644. https://doi.org/10.1002/Ejsp.793.

    Article  Google Scholar 

  49. Moshagen, M., & Musch, J. (2012). Surveying multiple sensitive attributes using an extension of the randomized-response technique. International Journal of Public Opinion Research, 24, 508–523.

    Article  Google Scholar 

  50. Moshagen, M., Musch, J., & Erdfelder, E. (2012). A stochastic lie detector. Behavior Research Methods, 44, 222–231. https://doi.org/10.3758/s13428-011-0144-221858604.

  51. Nederhof, A. J. (1985). Methods of coping with social desirability Bias - a review. European Journal of Social Psychology, 15, 263–280. https://doi.org/10.1002/ejsp.2420150303.

    Article  Google Scholar 

  52. Nosek, B. A., Greenwald, A. G., & Banaji, M. R. (2005). Understanding and using the implicit association test: II. Method variables and construct validity. Personality and Social Psychology Bulletin, 31, 166–180. https://doi.org/10.1177/0146167204271418.

    Article  Google Scholar 

  53. Ostapczuk, M., Musch, J., & Moshagen, M. (2011). Improving self-report measures of medication non-adherence using a cheating detection extension of the randomised-response-technique. Statistical Methods in Medical Research, 20, 489–503. https://doi.org/10.1177/0962280210372843.

    Article  PubMed  Google Scholar 

  54. Paulhus, D. L., & Reid, D. B. (1991). Enhancement and denial in socially desirable responding. Journal of Personality and Social Psychology, 60, 307–317. https://doi.org/10.1037/0022-3514.60.2.307.

    Article  Google Scholar 

  55. Pötzsch, O. (2012). Geburten in Deutschland [Births in Germany]. Retrieved fromhttps://www.destatis.de/DE/Publikationen/Thematisch/Bevoelkerung/Bevoelkerungsbewegung/BroschuereGeburtenDeutschland0120007129004.pdf. Accessed 6 June 2012.

  56. Powell, G. N., Butterfield, D. A., & Parent, J. D. (2002). Gender and managerial stereotypes: Have the times changed? Journal of Management, 28, 177–193. https://doi.org/10.1177/014920630202800203.

    Article  Google Scholar 

  57. Prentice, D. A., & Carranza, E. (2002). What women and men should be, shouldn't be, are allowed to be, and don't have to be: The contents of prescriptive gender stereotypes. Psychology of Women Quarterly, 26, 269–281. https://doi.org/10.1111/1471-6402.T01-1-00066.

    Article  Google Scholar 

  58. Reinders, M. (1996). Häufigkeit von Namensanfängen [frequency of first letters of surnames]. Statistische Rundschau Nordrhein-Westfalen, 11, 651–660.

    Google Scholar 

  59. Thielmann, I., Heck, D. W., & Hilbig, B. E. (2016). Anonymity and incentives: An investigation of techniques to reduce socially desirable responding in the trust game. Judgment and Decision Making, 11, 527–536.

    Google Scholar 

  60. Tourangeau, R., & Yan, T. (2007). Sensitive questions in surveys. Psychological Bulletin, 133, 859–883. https://doi.org/10.1037/0033-2909.133.5.85917723033.

  61. Ulrich, R., Schröter, H., Striegel, H., & Simon, P. (2012). Asking sensitive questions: A statistical power analysis of randomized response models. Psychological Methods, 17, 623–641. https://doi.org/10.1037/A0029314.

    Article  PubMed  Google Scholar 

  62. Umesh, U. N., & Peterson, R. A. (1991). A critical evaluation of the randomized-response method - applications, validation, and research agenda. Sociological Methods & Research, 20, 104–138.

    Article  Google Scholar 

  63. Warner, S. L. (1965). Randomized-response - a survey technique for eliminating evasive answer Bias. Journal of the American Statistical Association, 60, 63–69.

    Article  PubMed  Google Scholar 

  64. Wilde, A., & Diekman, A. B. (2005). Cross-cultural similarities and differences in dynamic stereotypes: A comparison between Germany and the United States. Psychology of Women Quarterly, 29, 188–196. https://doi.org/10.1111/j.1471-6402.2005.00181.x.

    Article  Google Scholar 

  65. Wittenbrink, B., & Schwarz, N. (2007). Introduction: Explicit and implicit measures of attitudes. In B. Wittenbrink & N. Schwarz (Eds.), Implicit measures of attitudes (pp. 1–3). New York: The Guilford Press.

    Google Scholar 

  66. World Medical Association. (2013). World medical association declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA, 310, 2191–2194. https://doi.org/10.1001/jama.2013.281053.

    Article  Google Scholar 

  67. Yu, J.-W., Tian, G.-L., & Tang, M.-L. (2008). Two new models for survey sampling with sensitive characteristic: Design and analysis. Metrika, 67, 251–263. https://doi.org/10.1007/s00184-007-0131-x.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Anke Sievert for her help in collecting the data for this study.

Funding

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - HO 5818/1-1.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adrian Hoffmann.

Ethics declarations

This study was carried out in accordance with the revised Declaration of Helsinki (2013) and the ethical guidelines of the German Society for Psychology. All participants were informed about the purpose of the study and about the strict anonymization of all data prior to their participation, and consented to participate on a voluntary basis. We certify that we have no affiliations with or involvement in any organization or entity with any financial or non-financial interest in the subject matter or materials discussed in this manuscript.

Electronic supplementary material

ESM 1

(DOCX 23 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hoffmann, A., Musch, J. Prejudice against Women Leaders: Insights from an Indirect Questioning Approach. Sex Roles 80, 681–692 (2019). https://doi.org/10.1007/s11199-018-0969-6

Download citation

Keywords

  • Prejudice
  • Gender
  • Women leaders
  • Social desirability
  • Validity
  • Indirect questioning
  • Randomized response technique
  • Crosswise model