Advertisement

Sex Roles

pp 1–20 | Cite as

Gender Bias Produces Gender Gaps in STEM Engagement

  • Corinne A. Moss-Racusin
  • Christina Sanzari
  • Nava Caluori
  • Helena Rabasco
Original Article

Abstract

We explored whether the existence of gender bias causes gender gaps in STEM engagement. In Experiment 1 (n = 322), U.S. women projected less sense of belonging, positivity toward, and aspirations to participate in STEM than did men when exposed to the reality of STEM gender bias. These gender differences disappeared when participants were told that STEM exhibits gender equality, suggesting that gender bias produces STEM gender gaps. Experiment 2 (n = 429) explored whether results generalized to a specific STEM department, and whether organizational efforts to mitigate gender bias might shrink gender gaps. U.S. women exposed to a biased chemistry department anticipated more discrimination and projected less sense of belonging, positive attitudes and trust and comfort than did men. These gender differences vanished when participants read about an unbiased department, again suggesting that gender bias promotes STEM gender gaps. Further, moderated mediation analyses suggested that in the presence of gender bias (but not gender equality), women projected less positive attitudes and trust and comfort than did men because they experienced less sense of belonging and anticipated more discrimination. Results were largely unaffected by whether departments completed a diversity training, suggesting that knowledge of diversity initiatives alone cannot close STEM gender gaps.

Keywords

Gender bias STEM Gender gap Sexism Diversity training 

Notes

Acknowledgements

The authors thank Dr. Evava Pietri for statistical consultation. This research was funded in part by a research grant from the Smithsonian Institute and a faculty development grant from Skidmore College, both to the first author.

Compliance with Ethical Standards

All data were collected in accordance with the highest established (APA) ethical standards (including obtaining informed consent from human participants). This work is not currently under review elsewhere, nor has it been previously published in whole or in part. This research was funded in part by a research grant from the Smithsonian Institute and a faculty development grant from Skidmore College, both to the first author.

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

11199_2018_902_MOESM1_ESM.docx (6.1 mb)
ESM 1 (DOCX 6196 kb)

References

  1. Adams, G., Garcia, D. M., Purdie-Vaughns, V., & Steele, C. M. (2006). The detrimental effects of a suggestion of sexism in an instruction situation. Journal of Experimental Social Psychology, 42, 602–615.  https://doi.org/10.1016/j.jesp.2005.10.004.CrossRefGoogle Scholar
  2. Anand, R., & Winters, M. F. (2008). A retrospective view of corporate diversity training from 1964 to the present. The Academy of Management Learning and Education, 7, 356–372.  https://doi.org/10.5465/AMLE.2008.34251673.CrossRefGoogle Scholar
  3. Brady, L. M., Kaiser, C. R., Major, B., & Kirby, T. A. (2015). It’s fair for us: Diversity structures cause women to legitimize discrimination. Journal of Experimental Social Psychology, 57, 100–110.  https://doi.org/10.1016/j.jesp.2014.11.010.CrossRefGoogle Scholar
  4. Brown, E. R., Diekman, A. B., & Schneider, M. C. (2011). A change will do us good: Threats diminish typical preference for male leaders. Personality and Social Psychology Bulletin, 37, 930–941.  https://doi.org/10.1177/0146167211403322.CrossRefPubMedGoogle Scholar
  5. Bruckmuller, S., & Branscombe, N. R. (2010). The glass cliff: When and why women are selected as leaders in crisis contexts. British Journal of Social Psychology, 49, 433–451.  https://doi.org/10.1348/014466609X466S94.CrossRefPubMedGoogle Scholar
  6. Buhrmester, M., Kwang, T., & Gosling, S. D. (2011). Amazon’s mechanical Turk: A new source of inexpensive, yet high-quality data? Perspectives on Psychological Science, 6, 3–5.  https://doi.org/10.1037/14805-009.CrossRefPubMedGoogle Scholar
  7. Carnes, M., Devine, P. G., Baier Manwell, L., Byars-Winston, A., Fine, E., Ford, C. E., … Sheridan, J. (2015). The effect of an intervention to break the gender bias habit for faculty at one institution: A cluster randomized, controlled trial. Academic Medicine, 90, 221–230.  https://doi.org/10.1097/ACM.0000000000000552.
  8. Ceci, S. J., & Williams, W. M. (2011). Understanding current causes of women’s underrepresentation in science. Proceedings of the National Academy of Sciences of the United States of America, 108, 3157–3162. Retrieved from http://www.jstor.org/stable/41060898.
  9. Ceci, S. J., Ginther, D. K., Kahn, S., & Williams, W. M. (2014). Women in academic science: A changing landscape. Psychological Science in the Public Interest, 15, 75–141.  https://doi.org/10.1177/1529100614541236.CrossRefPubMedGoogle Scholar
  10. Chaney, K. E., Sanchez, D. T., & Remedios, J. D. (2016). Organizational identity safety cue transfers. Personality and Social Psychology Bulletin, 42, 1564–1576.  https://doi.org/10.1177/0146167216665096.CrossRefGoogle Scholar
  11. Cheryan, S., & Plaut, V. C. (2010). Explaining underrepresentation: A theory of precluded interest. Sex Roles, 63, 475–488.  https://doi.org/10.1007/s11199-010-9835-x.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cheryan, S., Plaut, V. C., Davies, P. G., & Steele, C. M. (2009). Ambient belonging: How stereotypical cues impact gender participation in computer science. Journal of Personality and Social Psychology, 97, 1045–1060.  https://doi.org/10.1037/a0016239.CrossRefPubMedGoogle Scholar
  13. Cheryan, S., Meltzoff, A. N., & Kim, S. (2011). Classrooms matter: The design of virtual classrooms influences gender disparities in computer science classes. Computers & Education, 57, 1825–1835.  https://doi.org/10.1016/j.compedu.2011.02.004.CrossRefGoogle Scholar
  14. Cheryan, S., Ziegler, S. A., Montoya, A. K., & Jiang, L. (2017). Why are some STEM fields more gender balanced than others? Psychological Bulletin, 143, 1–35.  https://doi.org/10.1037/bul0000052.CrossRefPubMedGoogle Scholar
  15. Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillside: Lawrence Erlbaum Associates.Google Scholar
  16. Crocker, J., & Major, B. (1989). Social stigma and self-esteem: The self-protective properties of stigma. Psychological Review, 96, 608–630. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.336.9967&rep=rep1&type=pdf.
  17. Devine, P. G., Forscher, P. S., Cox, W. T. L., Kaatz, A., Sheridan, J., & Carnes, M. (2017). A gender bias habit-breaking intervention led to increased hiring of female faculty in STEMM departments. Journal of Experimental Social Psychology, 73, 211–215.  https://doi.org/10.1016/j.jesp.2017.07.002.CrossRefPubMedGoogle Scholar
  18. Diekman, A. B., Clark, E. K., Johnston, A. M., Brown, E. R., & Steinberg, M. (2011). Malleability in communal goals and beliefs influence attraction to STEM careers: Evidence for a goal congruity perspective. Journal of Personality and Social Psychology, 101, 902–918.  https://doi.org/10.1037/a0025199.CrossRefPubMedGoogle Scholar
  19. Diekman, A. B., Steinberg, M., Brown, E. R., Belanger, A. L., & Clark, E. K. (2017). A goal congruity model of role entry, engagement, and exit: Understanding communal goal processes in STEM gender gaps. Personality and Social Psychology Review, 21, 142–175.  https://doi.org/10.1177/1088868316642141.CrossRefPubMedGoogle Scholar
  20. Dobbin, F., Schrage, D., & Kalev, A. (2015). Rage against the iron cage: The varied effects of bureaucratic personnel reforms on diversity. American Sociological Review, 80, 1014–1044.  https://doi.org/10.1177/0003122415596416.CrossRefGoogle Scholar
  21. Files, J. A., Mayer, A. P., Ko, M. G., Friedrich, P., Jenkins, M., Bryan, M. J., … Hayes, S. N. (2017). Speaker introductions at internal medicine grand rounds: Forms of address reveal gender bias. Journal of Women’s Health, 26, 413–419.  https://doi.org/10.1089/jwh.2016.6044.
  22. Green, T., & Kalev, A. (2008). Discrimination-reducing measures at the relational level. Hastings Law Journal, 59, 1435–1461. Retrieved from https://ssrn.com/abstract=1322504.
  23. Halpern, D. F., Benbow, C. P., Geary, D. C., Gur, R. C., Hyde, J. S., & Gernsbacher, M. A. (2007). The science of sex differences in science and mathematics. Psychological Science in the Public Interest, 8, 1–51.  https://doi.org/10.1111/j.1529-1006.2007.00032.x.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Heilman, M. E., Wallen, A. S., Fuchs, D., & Tamkins, M. M. (2004). Penalties for success: Reactions to women who succeed at male gender-typed tasks. Journal of Applied Psychology, 89, 416–427.  https://doi.org/10.1037/0021-9010.89.3.416.CrossRefPubMedGoogle Scholar
  25. Hyde, J. S., & Linn, M. C. (2006). Gender similarities in mathematics and science. Science, 314, 599–600. Retrieved from http://www.jstor.org/stable/20031619.
  26. Inzlicht, M., & Schmader, T. (Eds.). (2012). Stereotype threat: Theory, process, and applications. New York: Oxford University Press.Google Scholar
  27. Kaiser, C. R., Major, B., Jurcevic, I., Dover, T. L., Brady, L. M., & Shapiro, J. R. (2013). Presumed fair: Ironic effects of organizational diversity structures. Journal of Personality and Social Psychology, 104, 504–519.  https://doi.org/10.1037/a0030838.CrossRefPubMedGoogle Scholar
  28. Knobloch-Westerwick, S., Glynn, C. J., & Huge, M. (2013). The matilda effect in science communication: An experiment on gender bias in publication quality perceptions and collaboration interest. Science Communication, 35, 603–625.  https://doi.org/10.1177/1075547012472684.CrossRefGoogle Scholar
  29. Lariviere, V., Ni, C., Gingras, Y., Cronin, B., & Sugimoto, C. R. (2013). Bibliometrics: Global gender disparities in science. Nature, 504, 211–213.  https://doi.org/10.1038/504211a.CrossRefPubMedGoogle Scholar
  30. Latu, I. M., Mast, M. S., & Stewart, T. L. (2015). Gender biases in (inter) action: The role of interviewers’ and applicants’ implicit and explicit stereotypes in predicting women’s job interview outcomes. Psychology of Women Quarterly, 39, 539–522.  https://doi.org/10.1177/0361684315577383.CrossRefGoogle Scholar
  31. Legault, L., Gutsell, J. N., & Inzlicht, M. (2011). Ironic effects of antiprejudice messages: How motivational interventions can reduce (but also increase) prejudice. Psychological Science, 22, 1472–1477.  https://doi.org/10.1177/0956797611427918.CrossRefPubMedGoogle Scholar
  32. Logel, C., Walton, G. M., Spencer, S. J., Iserman, E. C., von Hippel, W., & Bell, A. E. (2009). Interacting with sexist men triggers social identity threat among female engineers. Journal of Personality and Social Psychology, 96, 1089–1103.  https://doi.org/10.1037/a0015703.CrossRefPubMedGoogle Scholar
  33. Major, B., Quinton, W. J., & Schmader, T. (2003). Attributions to discrimination and self-esteem: Impact of group identification and situational ambiguity. Journal of Experimental Social Psychology, 39, 220–231.  https://doi.org/10.1016/S0022-1031(02)00547-4.CrossRefGoogle Scholar
  34. Midura, M. (2013). John vs. Jennifer: A battle of the sexes. Yale Scientific. Retrieved from http://www.yalescientific.org/2013/02/john-vs-jennifer-a-battle-of-the-sexes/.
  35. Milkman, K. L., Akinola, M., & Chugh, D. (2012). Temporal distance and discrimination: An audit study in academia. Psychological Science, 23, 710–717.  https://doi.org/10.1177/0956797611434539.CrossRefPubMedGoogle Scholar
  36. Milkman, K. L., Akinola, M., & Chugh, D. (2015). What happens before? A field experiment exploring how pay and representation differentially shape bias on the pathway into organizations. Journal of Applied Psychology, 100, 1678–1712.  https://doi.org/10.1037/apl0000022.CrossRefPubMedGoogle Scholar
  37. Moss-Racusin, C. A., Dovidio, J. F., Brescoll, V. L., Graham, M. J., & Handelsman, J. (2012). Science faculty’s subtle gender biases favor male students. Proceedings of the National Academy of Sciences, 109, 16474–16479. Retrieved from http://www.jstor.org/stable/41763373.
  38. Moss-Racusin, C. A., van der Toorn, J., Dovidio, J. F., Brescoll, V. L., Graham, M. J., & Handelsman, J. (2014). Scientific diversity interventions. Science, 343, 615–616.  https://doi.org/10.1126/science.1245936.CrossRefPubMedGoogle Scholar
  39. Moss-Racusin, C. A., Pietri, E. V., Hennes, E. P., Dovidio, J. F., Brescoll, V. L., Roussos, G., … Handelsman, J. (2018). Reducing gender bias with VIDS (Video interventions for diversity in STEM). Journal of Experimental Psychology: Applied. Advance online publication.  https://doi.org/10.1037/xap0000144.
  40. Murphy, M. C., Steele, C. M., & Gross, J. J. (2007). Signaling threat: How situational cues affect women in math, science, and engineering settings. Psychological Science, 18, 879–885.  https://doi.org/10.1111/j.1467-9280.2007.01995.x.CrossRefPubMedGoogle Scholar
  41. National Science Foundation, National Center for Science and Engineering Statistics (2017). Women, minorities, and persons with disabilities in science and engineering: 2017. Special Report NSF 17–310. Arlington, VA. Retrieved from www.nsf.gov/statistics/wmpd/.
  42. Nittrouer, C. L., Hebl, M. R., Ashburn-Nardo, L., Trump-Steele, R. C. E., Lane, D. M., & Valian, V. (2017). Gender disparities in colloquium speakers at top universities. Proceedings of the National Academy of Sciences of the United States of America, 115, 104–108.  https://doi.org/10.1073/pnas.1708414115.CrossRefPubMedGoogle Scholar
  43. Nosek, B. A., Banaji, M. R., & Greenwald, A. G. (2002). Math = male, me = female, therefore math ≠ me. Journal of Personality and Social Psychology, 83, 44–59.  https://doi.org/10.1037//0022-3514.83.1.44.
  44. Nosek, B. A., Smyth, F. L., Sriram, N., Linder, N. M., Devos, T., Ayala, A., … Greenwald, A. G. (2009). National differences in gender-science stereotypes predict national sex differences in science and math achievement. Proceedings of the National Academy of Sciences of the United States of America, 106, 10593-10597.  https://doi.org/10.1073/pnas.0809921106.
  45. Paluck, E. L. (2006). Diversity training and intergroup contact: A call to action research. Journal of Social Issues, 62, 577–595.  https://doi.org/10.1111/j.1540-4560.2006.00474.x.CrossRefGoogle Scholar
  46. Paluck, E. L., & Green, D. P. (2009). Prejudice reduction: What works? A review and assessment of research and practice. Annual Review of Psychology, 60, 339–367.  https://doi.org/10.1146/annurev.psych.60.110707.163607.CrossRefPubMedGoogle Scholar
  47. Paolacci, G., Chandler, J., & Ipeirotis, P. G. (2010). Running experiments on Amazon mechanical Turk. Judgment and Decision Making, 5, 411–419. Retrieved from https://ssrn.com/abstract=1626226.
  48. Parker, L. R., Monteith, M. J., Moss-Racusin, C. A., & Van Camp, A. R. (2018). Promoting concern about gender bias with evidence-based confrontation. Journal of Experimental Social Psychology, 74, 8–23.  https://doi.org/10.1016/j.jesp.2017.07.009.CrossRefGoogle Scholar
  49. Pietri, E. S., Moss-Racusin, C. A., Dovidio, J. F., Guha, D., Roussos, G., Brescoll, V. L., … Handelsman, J. (2017). Using video to increase gender bias literacy toward women in science. Psychology of Women Quarterly, 41, 175–196.  https://doi.org/10.1177/0361684316674721.
  50. Pollack, E. (2013, October 3). Why are there still so few women in science? New York Times Magazine. Retrieved from http://www.nytimes.com/2013/10/06/magazine/why-are-there-still-so-few-women-in-science.html.
  51. Purdie-Vaughns, V., & Eibach, R. P. (2008). Intersectional invisibility: The distinctive advantages and disadvantages of multiple subordinate-group identities. Sex Roles, 59, 377–391.  https://doi.org/10.1007/s11199-008-9424-4.CrossRefGoogle Scholar
  52. Purdie-Vaughns, V., Steele, C. M., Davies, P. G., Ditlmann, R., & Crosby, J. R. (2008). Social identity contingencies: How diversity cues signal threat or safety for African Americans in mainstream institutions. Journal of Personality and Social Psychology, 94, 615–630.  https://doi.org/10.1037/0022-3514.94.4.615.CrossRefPubMedGoogle Scholar
  53. Reuben, E., Sapienza, P., & Zingales, L. (2014). How stereotypes impair women’s careers in science. Proceedings of the National Academy of Sciences, 111, 4403–4408.  https://doi.org/10.1073/pnas.1314788111.CrossRefGoogle Scholar
  54. Robnett, R. D. (2016). Gender bias in STEM fields: Variation in prevalence and links to STEM self-concept. Psychology of Women Quarterly, 40, 65–79.  https://doi.org/10.1177/0361684315596162.CrossRefGoogle Scholar
  55. Sege, R., Nykiel-Bub, L., & Selk, S. (2015). Sex differences in institutional support for junior biomedical researchers. JAMA, 314, 1175–1177.  https://doi.org/10.1001/jama.2015.8517.CrossRefPubMedGoogle Scholar
  56. Smith, J. L., Sansone, C., & White, P. H. (2007). The stereotyped task engagement process: The role of interest and achievement motivation. Journal of Educational Psychology, 99, 99–114.  https://doi.org/10.1037/0022-0663.99.1.99.CrossRefGoogle Scholar
  57. Smith, J. L., Handley, I. M., Zale, A. V., Rushing, S., & Potvin, M. A. (2015). Now hiring! Empirically testing a three-step intervention to increase faculty gender diversity in STEM. Bioscience, 65, 1084–1087.  https://doi.org/10.1093/biosci/biv138.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Spelke, E. S. (2005). Sex differences in intrinsic aptitude for mathematics and science? A critical review. American Psychologist, 60, 950–958.  https://doi.org/10.1037/0003-066X.60.9.950.CrossRefPubMedGoogle Scholar
  59. Spencer, S. J., Steele, C. M., & Quinn, D. M. (1999). Stereotype threat and women's math performance. Journal of Experimental Social Psychology, 35, 4–28.  https://doi.org/10.1006/jesp.1998.1373.CrossRefGoogle Scholar
  60. Steele, C. M., & Aronson, J. (1995). Stereotype threat and the intellectual test performance of African-Americans. Journal of Personality and Social Psychology, 69, 797–811.  https://doi.org/10.1037/0022-3514.69.5.797.CrossRefPubMedGoogle Scholar
  61. Steele, J., James, J. B., & Barnett, R. C. (2002). Learning in a man’s world: Examining the perceptions of undergraduate women in male-dominated academic areas. Psychology of Women Quarterly, 26, 46–50.  https://doi.org/10.1111/1471-6402.00042.CrossRefGoogle Scholar
  62. Steinpreis, R. E., Anders, K. A., & Ritzke, D. (1999). The impact of gender on the review of the curricula vitae of job applicants and tenure candidates: A national empirical study. Sex Roles, 41, 509–528.  https://doi.org/10.1023/A:1018839203698.CrossRefGoogle Scholar
  63. Stout, J. G., Dasgupta, N., Hunsinger, M., & McManus, M. A. (2011). STEMing the tide: Using ingroup experts to inoculate women’s self-concept in science, technology, engineering, and mathematics (STEM). Journal of Personality and Social Psychology, 100, 255–270.  https://doi.org/10.1037/a0021385.CrossRefPubMedGoogle Scholar
  64. Thoman, D. B., & Sanson, C. (2016). Gender bias triggers diverging science interests between women and men: The role of activity interest appraisals. Motivation and Emotion, 40, 464–477.  https://doi.org/10.1007/s11031-016-9550-1.CrossRefGoogle Scholar
  65. Walsh, M., Hickey, C., & Duffy, J. (1999). Influence of item content and stereotype situation on gender differences in mathematical problem solving. Sex Roles, 41, 219–240.  https://doi.org/10.1023/A:1018854212358.CrossRefGoogle Scholar
  66. Walton, G. M., & Cohen, G. L. (2011). A brief social-belonging intervention improves academic and health outcomes of minority students. Science, 331, 1447–1451.  https://doi.org/10.1126/science.1198364.CrossRefPubMedGoogle Scholar
  67. Williams, W. M., & Ceci, S. J. (2012). When scientists choose motherhood. American Scientist, 100, 138–145.  https://doi.org/10.1511/2012.95.138.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Williams, W. M., & Ceci, S. J. (2015). National hiring experiments reveal 2:1 faculty preference for women on STEM tenure track. Proceedings of the National Academy of Sciences, 112, 5360–5365.  https://doi.org/10.1073/pnas.1418878112.CrossRefGoogle Scholar
  69. Williams, J. C., & Smith, J. L. (2015). The myth that academic science isn’t biased against women. The Chronicle of Higher Education. Retrieved from http://www.chronicle.com/article/The-Myth-That-Academic-Science/231413/.
  70. Williams, J. C., Phillips, K. W., & Hall, E. V. (2016). Tools for change: Boosting the retention of women in the STEM pipeline. Journal of Research in Gender Studies, 1, 11–75.  https://doi.org/10.22381/JRGS6120161.Google Scholar
  71. Wilton, L. S., Good, J. J., Moss-Racusin, C. A., & Sanchez, D. T. (2015). Communicating more than diversity: The effect of institutional diversity statements on expectations and performance as a function of race and gender. Cultural Diversity and Ethnic Minority Psychology, 21, 315–325.  https://doi.org/10.1037/a0037883.CrossRefPubMedGoogle Scholar
  72. Yeager, D. S., Walton, G. M., Brady, S. T., Akcinar, E. N., Paunesku, D., Keane, L., … Dweck, C. S. (2016). Teaching a lay theory before college narrows achievement gaps at scale. Proceedings of the National Academy of Sciences of the United States of America, 113, 3341–3348.  https://doi.org/10.1073/pnas.1524360113.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Corinne A. Moss-Racusin
    • 1
  • Christina Sanzari
    • 1
  • Nava Caluori
    • 1
  • Helena Rabasco
    • 1
  1. 1.Department of PsychologySkidmore CollegeSaratoga SpringsUSA

Personalised recommendations