Advertisement

Sex Roles

, Volume 77, Issue 3–4, pp 254–271 | Cite as

Mathematics—a Critical Filter for STEM-Related Career Choices? A Longitudinal Examination among Australian and U.S. Adolescents

  • Helen M. G. Watt
  • Janet S. Hyde
  • Jennifer Petersen
  • Zoe A. Morris
  • Christopher S. Rozek
  • Judith M. Harackiewicz
Original Article

Abstract

Although women have made progress in entering scientific careers in biology, they remain underrepresented in mathematically intensive fields such as physics. We investigated whether gender differences in mathematics motivation and socialisers’ perceptions impacted choices for diverse STEM careers of varying mathematical intensity. Drawing on expectancy-value theory, we tested structural equation models in which adolescents’ preferred careers related to each of physics, biology, chemistry, and mathematics were predicted by prior mathematical performance, motivations, and mothers’ perceptions. We explored potential differences in gendered processes of influence using multigroup models. Samples were 331 Australian adolescents followed from 9th to 11th grade in 1998 and 277 U.S. adolescents from 9th to 12th grade in 2009–10. In both samples female adolescents preferred biological careers more than males did; male adolescents preferred physics-related careers and also mathematical careers in the Australian sample. Mothers’ perceptions were important to female and male adolescents’ mathematics motivations; gendered motivations were more evident in the Australian sample. Mathematics interest played the strongest role in male adolescents’ preferred careers, whereas actual or perceived mathematical achievements were most important for females, demonstrating the impacts of mathematical motivations on preferences for diverse STEM careers.

Keywords

Gender STEM Mathematics Critical filter Career choice Expectancy-value theory High school 

Notes

Acknowledgments

The STEPS Study (www.stepsstudy.org) was supported by Australian Research Council Discovery grant DP110100472 and ARF awarded to Watt. The U.S. study was supported by the National Science Foundation DRL 0814750 to Hyde and Harackiewicz; and the Institute of Education Sciences, U.S. Department of Education, Award #R305B090009 to the University of Wisconsin—Madison. The opinions expressed are those of the authors and do not represent views of the U.S. Department of Education or the National Science Foundation; we thank Dan Lamanna, Maria Mens, Stefan Slater, and Ryan Svoboda for assistance with career coding; and Carlie Allison and Corinne Boldt for assistance with data collection.

Compliance with Ethical Standards

We attest that all work conforms with Australian and U.S. required ethical bodies and procedures.

Helen M. G. Watt, Janet S. Hyde, Jennifer Petersen, Zoe A. Morris, Christopher S. Rozek & Judith M. Harackiewicz

References

  1. Allison, P. D. (2001). Missing data. Sage University papers series on quantitative applications in the social sciences, 07–136. Thousand Oaks, CA: Sage.Google Scholar
  2. Arbuckle, J. L. (1996). Full information estimation in the presence of incomplete data. In G. A. Marcoulides & R. E. Schumacker (Eds.), Advanced structural equation modelling: Issues and techniques (pp. 243–277). Mahwah, NJ: Erlbaum.Google Scholar
  3. Australian Government Department of Education and Training. (2014). UCube higher education data. Retrieved from http://highereducationstatistics.education.gov.au/. Accessed 26 August 2016.
  4. Ceci, S. J., & Williams, W. M. (2011). Understanding current causes of women’s underrepresentation in science. PNAS, 108, 3157–3162. doi: 10.1073/pnas.1014871108.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Charles, M., & Bradley, K. (2009). Indulging our gendered selves? Sex segregation by field of study in 44 countries. American Journal of Sociology, 114, 924–976. doi: 10.1086/595942.CrossRefGoogle Scholar
  6. Cheryan, S., Master, A., & Meltzoff, A. N. (2015). Cultural stereotypes as gatekeepers: Increasing girls’ interest in computer science and engineering by diversifying stereotypes. Frontiers in Psychology, 6(49), 2–8. doi: 10.3389/fpsyg.2015.00049.Google Scholar
  7. Chhin, C. S., Bleeker, M. M., & Jacobs, J. E. (2008). Gender-typed occupational choices: The long-term impact of parents’ beliefs and expectations. In H. M. G. Watt & J. S. Eccles (Eds.), Gender and occupational outcomes (pp. 215–234). Washington, DC: American Psychological Association.Google Scholar
  8. Cole, D. A., & Preacher, K. J. (2014). Manifest variable path analysis: Potentially serious and misleading consequences due to uncorrected measurement error. Psychological Methods, 19(2), 300–315. doi: 10.1037/a0033805.CrossRefPubMedGoogle Scholar
  9. Crombie, G., Sinclair, N., Silverthorn, N., Byrne, B. M., DuBois, D. L., & Trinneer, A. (2005). Predictors of young adolescents’ math grades and course enrollment intentions: Gender similarities and differences. Sex Roles, 52, 351–367. doi: 10.1007/s11199-005-2678-1.CrossRefGoogle Scholar
  10. Davis-Kean, P. E. (2005). The influence of parent education and family income on child achievement: The indirect role of parental expectations and the home environment. Journal of Family Psychology, 19, 294–304. doi: 10.1037/0893-3200.19.2.294.CrossRefPubMedGoogle Scholar
  11. Diekman, A. B., Clark, E. K., Johnson, A. M., Brown, E. R., & Steinberg, M. (2011). Malleability in communal goals and beliefs influences attraction to STEM careers: Evidence for a goal congruity perspective. Journal of Personality and Social Psychology, 101, 902–918. doi: 10.1037/a0025199.CrossRefPubMedGoogle Scholar
  12. Dobson, I. R. (2012). Unhealthy science? University natural and physical sciences 2002 to 2009/10. Retrieved from http://www.chiefscientist.gov.au/wp-content/uploads/Unhealthy-Science-Report-Ian-R-Dobson.pdf. Accessed 26 August 2016.
  13. Eccles, J. S. (2005). Subjective task value and the Eccles et al. model of achievement-related choices. In A. J. Elliot & C. S. Dweck (Eds.), Handbook of competence and motivation (pp. 105–121). New York: Guilford.Google Scholar
  14. Eccles, J. S. (2009). Who am I and what am I going to do with my life? Personal and collective identities as motivators of action. Educational Psychologist, 44, 78–89. doi: 10.1080/00461520902832368.CrossRefGoogle Scholar
  15. Eccles, J. S. (2013). Gender and STEM: Opting in versus dropping out. International Journal of Gender, Science and Technology, 5(3), 2–3. Retrieved from http://www.vhto.nl/fileadmin/user_upload/documents/publicaties/Gender_and_STEM_Opting_in_versus_dropping_out.pdf. Accessed 26 August 2016.
  16. Eccles, J. S., & Vida, M. (2003, April). Predicting mathematics-related career aspirations and choices. Paper presented at the Society for Research in child development (SRCD) biennial conference, Tampa, FL.Google Scholar
  17. Eccles, J. S., & Wigfield, A. (1995). In the mind of the actor: The structure of adolescents' achievement task values and expectancy-related beliefs. Personality and Social Psychology Bulletin, 21, 215–225. doi: 10.1177/0146167295213003.CrossRefGoogle Scholar
  18. Eccles, (. P.). J., Adler, T. F., Futterman, R., Goff, S. B., Kaczala, C. M., Meece, J. L., & Midgley, C. (1983). Expectancies, values, and academic behaviors. In J. T. Spence (Ed.), Achievement and achievement motivation (pp. 75–146). San Francisco: W. H. Freeman.Google Scholar
  19. Eccles, J. S., Jacobs, J. E., & Harold, R. D. (1990). Gender role stereotypes, expectancy effects, and parents’ socialization of gender differences. Journal of Social Issues, 46, 183–201. doi: 10.1111/j.1540-4560.1990.tb01929.x.CrossRefGoogle Scholar
  20. Eccles, J. S., Jacobs, J. E., Harold, R. D., Yoon, K. S., Abreton, A., & Freedman-Doan, C. (1993a). Parents and gender-role socialization during the middle childhood and adolescent years. In S. Oskamp & M. Costanzo (Eds.), Gender issues in contemporary society, Claremont symposium on applied social psychology, 6 (pp. 59–83). Thousand Oaks, CA: Sage.Google Scholar
  21. Eccles, J., Wigfield, A., Harold, R. D., & Blumenfeld, P. (1993b). Age and gender differences in children’s self- and task perceptions during elementary school. Child Development, 64, 830–847. doi: 10.1111/j.1467-8624.1993.tb02946.x.CrossRefPubMedGoogle Scholar
  22. Else-Quest, N. M., Hyde, J. S., & Linn, M. C. (2010). Cross-national patterns of gender differences in mathematics: A meta-analysis. Psychological Bulletin, 136, 103–127. doi: 10.1037/a0018053.CrossRefPubMedGoogle Scholar
  23. Farmer, H. S., Wardrop, J. L., & Rotella, S. C. (1999). Antecedent factors differentiating women and men in science/nonscience careers. Psychology of Women Quarterly, 23, 763–780. doi: 10.1111/j.1471-6402.1999.tb00396.x.CrossRefGoogle Scholar
  24. Frome, P. M., & Eccles, J. S. (1998). Parents’ influence on children’s achievement-related perceptions. Journal of Personality and Social Psychology, 74, 435–452. doi: 10.1037/0022-3514.74.2.435.CrossRefPubMedGoogle Scholar
  25. Goodnow, J. J. (1988). Parents’ ideas, actions, and feelings: Models and methods from developmental and social psychology. Child Development, 59, 286–320. doi: 10.2307/1130312.CrossRefGoogle Scholar
  26. Harackiewicz, J. M., Barron, K. E., Tauer, J. M., Carter, S. M., & Elliot, A. J. (2000). Short-term and long-term consequences of achievement goals: Predicting interest and performance over time. Journal of Educational Psychology, 92, 316–330. doi: 10.1037/0022-0663.92.2.316.CrossRefGoogle Scholar
  27. Harackiewicz, J. M., Barron, K. E., Tauer, J. M., & Elliot, A. J. (2002). Predicting success in college: A longitudinal study of achievement goals and ability measures as predictors of interest and performance from freshman year through graduation. Journal of Educational Psychology, 94, 562–575. doi: 10.1037/0022-0663.94.3.562.CrossRefGoogle Scholar
  28. Harackiewicz, J. M., Durik, A. M., Barron, K. E., Linnenbrink-Garcia, L., & Tauer, J. M. (2008). The role of achievement goals in the development of interest: Reciprocal relations between achievement goals, interest, and performance. Journal of Educational Psychology, 100, 105–122. doi: 10.1037/0022-0663.100.1.105.CrossRefGoogle Scholar
  29. Harackiewicz, J. M., Rozek, C. S., Hulleman, C. S., & Hyde, J. S. (2012). Helping parents motivate their adolescents in mathematics and science: An experimental test. Psychological Science, 23, 899–906. doi: 10.1177/0956797611435530.CrossRefPubMedGoogle Scholar
  30. Harackiewicz, J. M., Canning, E. A., Tibbetts, Y., Priniski, S. J., & Hyde, J. S. (2016a). Closing achievement gaps with a utility-value intervention: Disentangling race and social class. Journal of Personality and Social Psychology, 111, 745–765. doi: 10.1037/pspp0000075.CrossRefPubMedGoogle Scholar
  31. Harackiewicz, J. M., Smith, J. L., & Priniski, S. J. (2016b). Interest matters: The importance of promoting interest in education. Policy Insights from the Behavioral and Brain Sciences, 3, 220–227. doi: 10.1177/2372732216655542.CrossRefGoogle Scholar
  32. Hidi, S. (1990). Interest and its contribution as a mental resource for learning. Review of Educational Research, 60, 549–571. doi: 10.3102/00346543060004549.CrossRefGoogle Scholar
  33. Hidi, S., & Harackiewicz, J. M. (2000). Motivating the academically unmotivated: A critical issue for the twenty-first century. Review of Educational Research, 70, 151–179. doi: 10.3102/00346543070002151.CrossRefGoogle Scholar
  34. Hill, C., Corbett, C., & St. Rose, A. (2010). Why so few? Women in science, technology, engineering, and mathematics. American Association of University Women. Retrieved from https://www.aauw.org/files/2013/02/Why-So-Few-Women-in-Science-Technology-Engineering-and-Mathematics.pdf. Accessed 26 August 2016.
  35. Hulleman, C. S., & Harackiewicz, J. M. (2009). Promoting interest and performance in high school science classes. Science, 326, 1410–1412. doi: 10.1126/science.1177067.CrossRefPubMedGoogle Scholar
  36. Hulleman, C. S., Durik, A. M., Schweigert, S. A., & Harackiewicz, J. M. (2008). Task values, achievement goals, and interest: An integrative analysis. Journal of Educational Psychology, 100, 398–416. doi: 10.1037/0022-0663.100.2.398.CrossRefGoogle Scholar
  37. Hulleman, C. S., Godes, O., Hendricks, B. L., & Harackiewicz, J. M. (2010). Enhancing interest and performance with a utility value intervention. Journal of Educational Psychology, 102(4), 880–895. doi: 10.1037/a0019506.CrossRefGoogle Scholar
  38. Hyde, J. S. (2005). The gender similarities hypothesis. American Psychologist, 60, 581–592. doi: 10.1037/0003-066X.60.6.581.CrossRefPubMedGoogle Scholar
  39. Hyde, J. S., Klein, M. H., Essex, M. J., & Clark, R. (1995). Maternity leave and women's mental health. Psychology of Women Quarterly, 19, 257–285. doi: 10.1111/j.1471-6402.1995.tb00291.x.CrossRefGoogle Scholar
  40. Hyde, J. S., Lindberg, S. M., Linn, M. C., Ellis, A., & Williams, C. (2008). Gender similarities characterize math performance. Science, 321, 494–495. doi: 10.1126/science.1160364.CrossRefPubMedGoogle Scholar
  41. Inglehart, R., & Welzel, C. (2005). Modernization, cultural change and democracy. New York: Cambridge University Press.Google Scholar
  42. Jacobs, J. E., & Eccles, J. S. (1992). The impact of mothers’ gender-role stereotypic beliefs on mothers’ and children’s ability perceptions. Journal of Personality and Social Psychology, 63, 932–944. doi: 10.1037/0022-3514.63.6.932.CrossRefPubMedGoogle Scholar
  43. Lazarides, R., & Ittel, A. (2013). Mathematics interest and achievement: What role do perceived parent and teacher support play? A longitudinal analysis. International Journal of Gender, Science and Technology, 5(3), 207–231. Retrieved fromhttp://genderandset.open.ac.uk/index.php/genderandset/article/viewFile/301/526. Accessed 26 August 2016.
  44. Leaper, C., Farkas, T., & Brown, C. S. (2012). Adolescent girls’ experiences and gender-related beliefs in relation to their motivation in math/science and English. Journal of Youth and Adolescence, 41(3), 268–282. doi: 10.1007/s10964-011-9693-z.CrossRefPubMedGoogle Scholar
  45. Lindberg, S. M., Hyde, J. S., Petersen, J., & Linn, M. C. (2010). New trends in gender and mathematics performance: A meta-analysis. Psychological Bulletin, 136, 1123–1135. doi: 10.1037/a0021276.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Little, T. D. (1997). Mean and covariance structures (MACS) analyses of cross-cultural data: Practical and theoretical issues. Multivariate Behavioral Research, 32, 53–76. doi: 10.1207/s15327906mbr3201_3.CrossRefPubMedGoogle Scholar
  47. Little, T. D. (2013). Longitudinal structural equation modeling. New York, NY: The Guildford Press.Google Scholar
  48. Maltese, A. V., & Tai, R. H. (2011). Pipeline persistence: Examining the association of educational experiences with earned degrees in STEM among U.S. students. Science Education, 95, 877–907. doi: 10.1002/sce.20441.CrossRefGoogle Scholar
  49. Meece, J. L., Eccles, (. P.). J., Kaczala, C. M., Goff, S. B., & Putterman, R. (1982). Sex differences in math achievement: Toward a model of academic choice. Psychological Bulletin, 91, 324–348. doi: 10.1037/0033-2909.91.2.324.CrossRefGoogle Scholar
  50. Meece, J. L., Wigfield, A., & Eccles, J. S. (1990). Predictors of math anxiety and its influence on young adolescents’ course enrollment intentions and performance in mathematics. Journal of Educational Psychology, 82, 60–70. doi: 10.1037/0022-0663.82.1.60.CrossRefGoogle Scholar
  51. Meredith, W. (1993). Measurement invariance, factor analysis and factorial invariance. Psychometrika, 58(4), 525–543. doi: 10.1007/BF02294825.CrossRefGoogle Scholar
  52. Miller, C. C. (2011, July 13). Girl power wins at Google’s first science fair. New York Times. Retrieved from http://www.nytimes.com/2011/07/19/science/19google.html. Accessed 26 August 2016.
  53. Miyake, A., Kost-Smith, L., Finkelstein, N. D., Pollock, S. J., Cohen, G. L., & Ito, T. A. (2010). Reducing the gender achievement gap in college science: A classroom study of values affirmation. Science, 330, 1234–1237. doi: 10.1126/science.1195996.CrossRefPubMedGoogle Scholar
  54. National Center for O*NET Development. (2011). O*NET products at work. Retrieved from https://www.onetcenter.org/dl_files/paw/Products_at_Work.pdf. Accessed 26 August 2016.
  55. National Science Foundation. (2016). Doctorate recipients by sex and subfield. Retrieved from https://www.nsf.gov/statistics/2016/nsf16300/data-tables.cfm. Accessed 26 August 2016.
  56. National Student Clearinghouse Research Center. (2013). Snapshot report – degree attainment. Retrieved from https://nscresearchcenter.org/snapshotreport-degreeattainment3/. Accessed 26 August 2016.
  57. Osipow, S. H., & Fitzgerald, L. F. (1996). Theories of career development (4th ed). London: Allyn & Bacon.Google Scholar
  58. Pomerantz, E. M., & Dong, W. (2006). Effects of mothers’ perceptions of children’s competence: The moderating role of mothers’ theories of competence. Developmental Psychology, 42, 950–961. doi: 10.1037/0012-1649.42.5.950.CrossRefPubMedGoogle Scholar
  59. Riegle-Crumb, C., & King, B. (2010). Questioning a white male advantage in STEM: Examining disparities in college major by gender and race-ethnicity. Educational Researcher, 39, 656–664. doi: 10.3102/0013189X10391657.CrossRefGoogle Scholar
  60. Robnett, R. D., & Leaper, C. (2013). Friendship groups, personal motivation, and gender in relation to high school students’ STEM career interest. Journal of Research on Adolescence, 23, 652–664. doi: 10.1111/jora.12013.CrossRefGoogle Scholar
  61. Sells, L. W. (1980). Mathematics: The invisible filter. Engineering Education, 70, 340–341.Google Scholar
  62. Shapka, J. D., Domene, J. F., & Keating, D. P. (2006). Trajectories of career aspirations through adolescence and young adulthood: Early math achievement as a critical filter. Educational Research and Evaluation, 12, 347–358. doi: 10.1080/13803610600765752.CrossRefGoogle Scholar
  63. Shih, M. J., Pittinsky, T. L., & Ho, G. C. (2012). Stereotype boost: Positive outcomes from the activation of positive stereotypes. In M. Inzlicht & T. Schmader (Eds.), Stereotype threat: Theory, process, and application (pp. 141–156). New York: Oxford University Press.Google Scholar
  64. Sorby, S., Casey, B. M., Veurink, N., & Dulaney, A. (2013). The role of spatial training in improving spatial and calculus performance in engineering students. Learning and Individual Differences, 26, 20–29. doi: 10.1016/j.lindif.2013.03.010.CrossRefGoogle Scholar
  65. Steele, C. (1997). A threat in the air: How stereotypes shape intellectual identity and performance. American Psychologist, 52, 613–629. doi: 10.1037/0003-066X.52.6.613.CrossRefPubMedGoogle Scholar
  66. Steffens, J. C., Jelenec, P., & Noack, P. (2010). On the leaky math pipeline: Comparing implicit math-gender stereotypes and math withdrawal in female and male children and adolescents. Journal of Educational Psychology, 102, 947–963. doi: 10.1037/a0019920.CrossRefGoogle Scholar
  67. STEPS. (2016). STEPS: Study of Transitions and Educational Pathways. Retrieved from http://www.stepsstudy.org/. Accessed 26 August 2016.
  68. Su, R., Rounds, J., & Armstrong, P. I. (2009). Men and things, women and people: A meta-analysis of sex differences in interests. Psychological Bulletin, 135, 859–884. doi: 10.1037/a0017364.CrossRefPubMedGoogle Scholar
  69. U.S. Department of Labor Employment and Training Administration. (1998). O*NET: The occupational information network. Washington, DC: U.S. Government Printing Office.Google Scholar
  70. United States Census Bureau. (2006). State and county quickfacts. Retrieved from http://quickfacts.census.gov/qfd/states/55000.html. Accessed 26 August 2016.
  71. Updegraff, K. A., Eccles, J. S., Barber, B. L., & O’Brien, K. M. (1996). Course enrollment as self-regulatory behavior: Who takes optional high school math courses? Learning and Individual Differences, 8, 239–259. doi: 10.1016/S1041-6080(96)90016-3.CrossRefGoogle Scholar
  72. Wai, J., Lubinksy, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101, 817–835. doi: 10.1037/a0016127.CrossRefGoogle Scholar
  73. Walton, G. M., & Cohen, G. L. (2003). Stereotype lift. Journal of Experimental Social Psychology, 39, 456–467. doi: 10.1016/S0022-1031(03)00019-2.CrossRefGoogle Scholar
  74. Watt, H. M. G. (2002). Gendered achievement-related choices and behaviours in mathematics and English: The nature and influence of self-, task- and value perceptions (Unpublished PhD thesis). University of Sydney, Sydney, NSW, Australia.Google Scholar
  75. Watt, H. M. G. (2004). Development of adolescents’ self-perceptions, values and task perceptions according to gender and domain in 7th through 11th-grade Australian students. Child Development, 75, 1556–1574. doi: 10.1111/j.1467-8624.2004.00757.x.CrossRefPubMedGoogle Scholar
  76. Watt, H. M. G. (2006). The role of motivation in gendered educational and occupational trajectories related to maths. Educational Research and Evaluation, 12, 305–322. doi: 10.1080/13803610600765562.CrossRefGoogle Scholar
  77. Watt, H. M. G. (2008). What motivates females and males to pursue sex-stereotyped careers? In H. M. G. Watt & J. S. Eccles (Eds.), Gender and occupational outcomes: Longitudinal assessments of individual, social, and cultural influences (pp. 87–113). Washington, DC: American Psychological Association. doi: 10.1037/11706-003.CrossRefGoogle Scholar
  78. Watt, H. M. G. (2016). Gender and motivation. In K. R. Wentzel & D. B. Miele (Eds.), Handbook of motivation at school (2nd ed., pp. 320–339). New York: Routledge.Google Scholar
  79. Watt, H. M. G., Eccles, J. S., & Durik, A. M. (2006). The leaky mathematics pipeline for girls: A motivational analysis of high school enrolments in Australia and the USA. Equal Opportunities International, 25(8), 642–659. doi: 10.1108/02610150610719119.CrossRefGoogle Scholar
  80. Watt, H. M. G., Shapka, J. D., Morris, Z. A., Durik, A. M., Keating, D. P., & Eccles, J. S. (2012). Gendered motivational processes affecting high school mathematics participation, educational aspirations, and career plans: A comparison of samples from Australia, Canada, and the United States. Developmental Psychology, 48, 1594–1611. doi: 10.1037/a0027838.CrossRefPubMedGoogle Scholar
  81. Wigfield, A. (1993). Why should I learn this? Adolescents’ achievement values for different activities. In M. L. Maehr & P. R. Pintrich (Eds.), Advances in motivation and achievement (Vol. 8, pp. 99–138). Greenwich, CT: JAI Press.Google Scholar
  82. Wigfield, A. (1994). Expectancy-value theory of achievement motivation: A developmental perspective. Educational Psychology Review, 6, 49–78. doi: 10.1007/BF02209024.CrossRefGoogle Scholar
  83. Wigfield, A., & Eccles, J. S. (2000). Expectancy-value theory of achievement motivation. Contemporary Educational Psychology, 25, 68–81. doi: 10.1006/ceps.1999.1015.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Helen M. G. Watt
    • 1
  • Janet S. Hyde
    • 2
  • Jennifer Petersen
    • 3
  • Zoe A. Morris
    • 1
  • Christopher S. Rozek
    • 4
  • Judith M. Harackiewicz
    • 2
  1. 1.Faculty of EducationMonash UniversityMelbourneAustralia
  2. 2.Department of PsychologyUniversity of Wisconsin—MadisonMadisonUSA
  3. 3.Department of Educational FoundationsUniversity of Wisconsin—WhitewaterWhitewaterUSA
  4. 4.Department of PsychologyUniversity of ChicagoChicagoUSA

Personalised recommendations