Advertisement

Sex Roles

, Volume 72, Issue 11–12, pp 536–546 | Cite as

Gender Gaps in Overestimation of Math Performance

  • Shane W. Bench
  • Heather C. Lench
  • Jeffrey Liew
  • Kathi Miner
  • Sarah A. Flores
Original Article

Abstract

In the United States, men are more likely to pursue math-intense STEM courses and careers than women. This investigation explored whether positivity bias in the degree to which people overestimate their past performance contributes to this gender gap. To find out, two studies were conducted with undergraduate college students in the Southern United States. In Study 1, participants (n = 122) completed a math test and estimated the percent they had solved. They then were given feedback and completed a second math test and estimation. Men overestimated their performance more than women, judging they had done better on the test than they actually had. This gender difference was not present after feedback. Further, women, but not men, who reported a more positive previous experience with math were more likely to overestimate their performance. In Study 2, participants (n = 184) completed a math test and estimated the percent they had solved. They also reported their interest in pursuing math courses and careers. Again, men overestimated their performance more than women. This greater overestimation of performance in men accounted for their greater intent to pursue math fields compared to women. The findings suggest that gender gaps in STEM fields are not necessarily the result of women underestimating their abilities, but rather may be due to men overestimating their abilities.

Keywords

Gender differences Positivity bias STEM Optimism 

Notes

Compliance with Ethical Standards

The authors declare no conflict of interest. All participants provided informed consent prior to the reported studies. Documentation of informed consent has been maintained for all participants.

References

  1. Acker, J. (1990). Hierarchies, jobs, bodies: A theory of gendered organizations. Gender & Society, 4, 139–158. doi: 10.1177/089124390004002002.CrossRefGoogle Scholar
  2. Amelink, C. T., & Creamer, E. G. (2010). Gender differences in elements of the undergraduate experience that influence satisfaction with the engineering major and the intent to pursue engineering as a career. Journal of Engineering Education, 99, 81–92. doi: 10.1002/j.2168-9830.2010.tb01044.x.CrossRefGoogle Scholar
  3. American Association of University Women (AAUW). (2008). Women and girls in STEM. Washington, DC: Author.Google Scholar
  4. Ashcraft, M. H. (2002). Math anxiety: Personal, educational, and cognitive consequences. Current Directions in Psychological Science, 11, 181–185. doi: 10.1111/1467-8721.00196.CrossRefGoogle Scholar
  5. Bandura, A., Barbaranelli, C., Caprara, G. V., & Pastorelli, C. (2001). Self-efficacy beliefs as shapers of children’s aspirations and career trajectories. Child Development, 72, 187–206. doi: 10.1111/1467-8624.00273.PubMedCrossRefGoogle Scholar
  6. Beyer, S. (1990). Gender differences in the accuracy of self-evaluations of performance. Journal of Personality and Social Psychology, 59, 960–970. doi: 10.1037/0022-3514.59.5.960.CrossRefGoogle Scholar
  7. Beyer, S., & Bowden, E. M. (1997). Gender differences in self-perceptions: Convergent evidence from three measures of accuracy and bias. Personality and Social Psychology Bulletin, 23, 157–172. doi: 10.1177/0146167297232005.CrossRefGoogle Scholar
  8. Blalock, S. J., DeVellis, B. M., Afifi, R. A., & Sandler, R. S. (1990). Risk perceptions and participation in colorectal cancer screening. Health Psychology, 9, 792–806. doi: 10.1037/0278-6133.9.6.792.PubMedCrossRefGoogle Scholar
  9. Byrne, B. M. (1988a). Measuring adolescent self-concept: Factorial validity and equivalency of the SDQ III across gender. Multivariate Behavioral Research, 23, 361–375. doi: 10.1207/s15327906mbr2303_5.CrossRefGoogle Scholar
  10. Byrne, B. M. (1988b). The self description questionnaire III: Testing for equivalent factorial valididty across ability. Educational and Psychological Measurement, 48, 397–406. doi: 10.1177/0013164488482012.CrossRefGoogle Scholar
  11. Byrne, B. M., & Shavelson, R. J. (1986). On the structure of adolescent self-concept. Journal of Educational Psychology, 78, 474–481. doi: 10.1037/0022-0663.78.6.474.CrossRefGoogle Scholar
  12. Cheryan, S., Plaut, V. C., Davies, P. G., & Steele, C. M. (2009). Ambient belonging: How stereotypical cues impact gender participation in computer science. Journal of Personality and Social Psychology, 97, 1045–1060. doi: 10.1037/a0016239.PubMedCrossRefGoogle Scholar
  13. Cooper, S. E., & Robinson, D. A. G. (1991). The relationship of mathematics self-efficacy beliefs to mathematics anxiety and performance. Measurement and Evaluation in Counseling and Development, 24, 4–11.Google Scholar
  14. Crocker, J., & Major, B. (1989). Social stigma and self-esteem: The self-protective properties of stigma. Psychological Review, 96, 608–630. doi: 10.1037/0033-295X.96.4.608.CrossRefGoogle Scholar
  15. Dasgupta, N., & Asgari, S. (2004). Seeing is believing: Exposure to counterstereotypic women leaders and its effect on the malleability of automatic gender stereotyping. Journal of Experimental Social Psychology, 40, 642–658. doi: 10.1016/j.jesp.2004.02.003.CrossRefGoogle Scholar
  16. Eccles, J. S. (1994). Understanding women’s educational and occupational choices: Applying the Eccles et al. model of achievement-related choices. Psychology of Women Quarterly, 18, 585–609. doi: 10.1111/j.1471-6402.1994.tb01049.x.CrossRefGoogle Scholar
  17. Educational Testing Service. (2007). Scholastic Aptitude Test.Google Scholar
  18. Ehrlinger, J., & Dunning, D. (2003). How chronic self-views influence (and potentially mislead) estimates of performance. Journal of Personality and Social Psychology, 84, 5–17. doi: 10.1037/0022-3514.84.1.5.PubMedCrossRefGoogle Scholar
  19. Else-Quest, N. M., Hyde, J. S., & Linn, M. C. (2010). Cross-national patterns of gender differences in mathematics: A meta-analysis. Psychological Bulletin, 136, 103–127. doi: 10.1037/a0018053.PubMedCrossRefGoogle Scholar
  20. Good, C., Aronson, J., & Harder, J. A. (2008). Problems in the pipeline: Stereotype threat and women’s achievement in high-level math courses. Journal of Applied Developmental Psychology, 29, 17–28. doi: 10.1016/j.appdev.2007.10.004.CrossRefGoogle Scholar
  21. Hackett, G. (1985). Role of mathematics self-efficacy in the choice of math-related majors of college women and men: A path analysis. Journal of Counseling Psychology, 32, 47–56. doi: 10.1037/0022-0167.32.1.47.CrossRefGoogle Scholar
  22. Halpern, D. F., Benbow, C. P., Geary, D. C., Gur, R. C., Hyde, J. S., & Gernsbacher, M. A. (2007). The science of sex differences in science and mathematics. Psychological Science in Public Interest, 8, 1–51. doi: 10.1111/j.1529-1006.2007.00032.x.Google Scholar
  23. Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. New York: Guilford Press.Google Scholar
  24. Hilton, J. L., & von Hippel, W. (1996). Stereotypes. Annual Reviews of Psychology, 47, 237–271. doi: 10.1146/annurev.psych.47.1.237.CrossRefGoogle Scholar
  25. Kimball, M. M., & Gray, V. A. (1982). Feedback and performance expectancies in an academic setting. Sex Roles, 8, 999–1007. doi: 10.1007/BF00290024.CrossRefGoogle Scholar
  26. Kluger, A. N., & DeNisi, A. (1996). The effects of feedback interventions on performance: A historical review, a meta-analysis, and a preliminary feedback intervention theory. Psychological Bulletin, 119, 254–284. doi: 10.1037/0033-2909.119.2.254.CrossRefGoogle Scholar
  27. Lane, K. A., Goh, J. X., & Driver-Linn, E. (2012). Implicit science stereotypes mediate the relationship between gender and academic participation. Sex Roles, 66, 220–234. doi: 10.1007/s11199-011-0036-z.CrossRefGoogle Scholar
  28. Lenney, E. (1977). Women’s self-confidence in achievement settings. Psychological Bulletin, 84, 1–13. doi: 10.1037/0033-2909.84.1.1.CrossRefGoogle Scholar
  29. Lin, Y. C., Lin, C. H., & Raghubir, P. (2003). Avoiding anxiety, being in denial, or simply stroking self-esteem: Why self-positivity? Journal of Consumer Psychology, 13, 464–477. doi: 10.2139/ssrn.410561.CrossRefGoogle Scholar
  30. Major, B., Spencer, S., Schmader, T., Wolfe, C., & Crocker, J. (1998). Coping with negative stereotypes about intellectual performance: The role of psychological disengagement. Personality and Social Psychology Bulletin, 24, 34–50. doi: 10.1177/0146167298241003.CrossRefGoogle Scholar
  31. Marsh, H. W. (1992). SDQ III. Campbelltown: University of Western Sydney, Publication Unit.Google Scholar
  32. Marsh, H. W., & O’Neill, R. (1984). Self description questionnaire III: The construct validity and multidimensional self-concept ratings by late adolescents. Journal of Educational Measurement, 21, 153–174. doi: 10.1111/j.1745-3984.1984.tb00227.x.CrossRefGoogle Scholar
  33. Marsh, H. W., Barnes, J., & Hocevar, D. (1985). Self-other agreement on multidimensional self-concept ratings: Factor analysis and multitrait-multimethod analysis. Journal of Personality and Social Psychology, 49, 1360–1377. doi: 10.1037/0022-3514.49.5.1360.CrossRefGoogle Scholar
  34. Marsh, H. W., Richards, G., & Barnes, J. (1986). Multidimensional self-concepts: The effect of participation in an outward bound program. Journal of Personality and Social Psychology, 50, 195–204. doi: 10.1037/0022-3514.50.1.195.CrossRefGoogle Scholar
  35. Martin, P. Y. (2001). “Mobilizing masculinities”: Women’s experiences of men at work. Organization, 8, 587–618. doi: 10.1177/135050840184003.CrossRefGoogle Scholar
  36. Martin, P. Y. (2003). “Said and done” versus “saying and doing”: Gendering practices, practicing gender at work. Gender & Society, 17, 342–366. doi: 10.1177/0891243203017003002.CrossRefGoogle Scholar
  37. Mezulis, A. H., Abramson, L. Y., Hyde, J. S., & Hankin, B. L. (2004). Is there a universal positivity bias in attributions? A meta-analytic review of individual, developmental, and cultural differences in the self-serving attributional bias. Psychological Bulletin, 130, 711–747. doi: 10.1037/0033-2909.130.5.711.PubMedCrossRefGoogle Scholar
  38. Miller, G. E. (2004). Frontier masculinity in the oil industry: The experience of women engineers. Gender, Work & Organization, 11, 47–73. doi: 10.1111/j.1468-0432.2004.00220.x.CrossRefGoogle Scholar
  39. Mura, R. (1987). Sex related differences in expectations of success in undergraduate mathematics. Journal of Research in Mathematics Education, 18, 15–24. doi: 10.2307/749533.CrossRefGoogle Scholar
  40. Murphy, M. C., Steele, C. M., & Gross, J. J. (2007). Signaling threat: How situational cues affect women in math, science, and engineering settings. Psychological Science, 18, 879–885. doi: 10.1111/j.1467-9280.2007.01995.x.PubMedCrossRefGoogle Scholar
  41. National Science Foundation. (2008). Science and Engineering Indicators 2008. Retrieved from http://www.nsf.gov/statistics/seind08/.
  42. Nielsen, I. L., & Moore, K. A. (2003). Psychometric data on the mathematics self-efficacy scale. Educational and Psychological Measurement, 63, 128–138. doi: 10.1177/0013164402239321.CrossRefGoogle Scholar
  43. Nosek, B. A., Banaji, M., & Greenwald, A. G. (2002). Harvesting implicit group attitudes and beliefs from a demonstration web site. Group Dynamics: Theory, Research, and Practice, 6, 101–115. doi: 10.1037/1089-2699.6.1.101.CrossRefGoogle Scholar
  44. Pajares, F. (2005). Gender differences in mathematics self-efficacy beliefs. In A. M. Gallagher & J. C. Kaufman (Eds.), Gender differences in mathematics: An integrative psychological approach (pp. 294–315). New York: Cambridge University Press.Google Scholar
  45. Paulhus, D. L., Harms, P. D., Bruce, N., & Lysy, D. C. (2003). The over-claiming technique: Measuring self-enhancement independent of ability. Journal of Personality and Social Psychology, 84, 890–904. doi: 10.1037/0022-3514.84.4.890.PubMedCrossRefGoogle Scholar
  46. Rinn, A. N., & Cunningham, L. G. (2008). Using self-concept instruments with high-ability college students. Gifted Child Quarterly, 52, 232–242. doi: 10.1177/0016986208319458.CrossRefGoogle Scholar
  47. Sainz, M., & Eccles, J. (2012). Self-concept of computer and math ability: Gender implications across time and within ICT studies. Journal of Vocational Behavior, 80, 486–499. doi: 10.1016/j.jvb.2011.08.005.CrossRefGoogle Scholar
  48. Schmader, T., Johns, M., & Forbes, C. (2008). An integrated process model of stereotype threat effects on performance. Psychological Review, 115, 336–356. doi: 10.1037/0033-295X.115.2.336.PubMedCentralPubMedCrossRefGoogle Scholar
  49. Segerstrom, S. C., Taylor, S. E., Kemeny, M. E., & Fahey, J. L. (1998). Optimism is associated with mood, coping, and immune change in response to stress. Journal of Personality and Social Psychology, 74, 1646–1655. doi: 10.1037/0022-3514.74.6.1646.PubMedCrossRefGoogle Scholar
  50. Seymour, E. (1995). The loss of women from science, mathematics, and engineering undergraduate majors: An explanatory account. Science Education, 79, 437–473. doi: 10.1002/sce.3730790406.CrossRefGoogle Scholar
  51. Spencer, S. J., Steele, C. M., & Quinn, D. M. (1999). Stereotype threat and women’s math performance. Journal of Experimental Social Psychology, 35, 4–28. doi: 10.1006/jesp. 1998.1373.CrossRefGoogle Scholar
  52. Steele, C. M. (1997). A threat in the air: How stereotypes shape intellectual identity and performance. American Psychologist, 52, 613–629. doi: 10.1037/0003-066X.52.6.613.PubMedCrossRefGoogle Scholar
  53. Steele, C. M., & Aronson, J. (1995). Stereotype threat and the intellectual test performance of African Americans. Journal of Personality and Social Psychology, 69, 797–811. doi: 10.1037/0022-3514.69.5.797.PubMedCrossRefGoogle Scholar
  54. Steele, C. M., Spencer, S. J., & Aronson, J. (2002). Contending with group image: The psychology of stereotype and social identity threat. Advances in Experimental Social Psychology, 34, 379–440. doi: 10.1016/S0065-2601(02)80009-0.CrossRefGoogle Scholar
  55. Stout, J. G., Dasgupta, N., Hunsinger, M., & McManus, M. A. (2011). STEMing the tide: Using ingroup experts to inoculate women’s self-concept in science, technology, engineering, and mathematics (STEM). Journal of Personality and Social Psychology, 100, 255–270. doi: 10.1037/a0021385.PubMedCrossRefGoogle Scholar
  56. Taylor, S. E., & Brown, J. D. (1988). Illusion and well-being: A social psychological perspective on mental health. Psychological Bulletin, 103, 193–210. doi: 10.1037/0033-2909.103.2.193.PubMedCrossRefGoogle Scholar
  57. Taylor, S. E., & Gollwitzer, P. M. (1995). Effects of mindset on positive illusions. Journal of Personality and Social Psychology, 69, 213–226. doi: 10.1037/0022-3514.69.2.213.PubMedCrossRefGoogle Scholar
  58. Vispoel, W. P. (1996). The development and validation of the Arts Self-Perception Inventory for adults. Educational and Psychological Measurment, 56, 719–735. doi: 10.1177/0013164496056004013.CrossRefGoogle Scholar
  59. Weinstein, N. D., & Klein, W. M. (1995). Resistance of personal risk perceptions to debiasing interventions. Health Psychology, 14, 132–140. doi: 10.1037/0278-6133.14.2.132.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Shane W. Bench
    • 1
  • Heather C. Lench
    • 2
  • Jeffrey Liew
    • 3
  • Kathi Miner
    • 2
  • Sarah A. Flores
    • 2
  1. 1.Department of PsychologyWashington State UniversityPullmanUSA
  2. 2.Department of PsychologyTexas A&M UniversityCollege StationUSA
  3. 3.Department of Educational PsychologyTexas A&M UniversityCollege StationUSA

Personalised recommendations