Sex Roles

, Volume 69, Issue 1–2, pp 58–71 | Cite as

The Stereotypical Computer Scientist: Gendered Media Representations as a Barrier to Inclusion for Women

  • Sapna CheryanEmail author
  • Victoria C. Plaut
  • Caitlin Handron
  • Lauren Hudson
Original Article


The present research examines undergraduates’ stereotypes of the people in computer science, and whether changing these stereotypes using the media can influence women’s interest in computer science. In Study 1, college students at two U.S. West Coast universities (N = 293) provided descriptions of computer science majors. Coding these descriptions revealed that computer scientists were perceived as having traits that are incompatible with the female gender role, such as lacking interpersonal skills and being singularly focused on computers. In Study 2, college students at two U.S. West Coast universities (N = 54) read fabricated newspaper articles about computer scientists that either described them as fitting the current stereotypes or no longer fitting these stereotypes. Women who read that computer scientists no longer fit the stereotypes expressed more interest in computer science than those who read that computer scientists fit the stereotypes. In contrast, men’s interest in computer science did not differ across articles. Taken together, these studies suggest that stereotypes of academic fields influence who chooses to participate in these fields, and that recruiting efforts to draw more women into computer science would benefit from media efforts that alter how computer scientists are depicted.


Stereotypes Gender Media Computer science Underrepresentation 


  1. Allport, G. W. (1954). The nature of prejudice. England, Oxford: Addison-Wesley.Google Scholar
  2. Barker, L. J., & Aspray, W. (2006). The state of research on girls and IT. In J. M. Cohoon & W. Aspray (Eds.), Women and information technology: Research on underrepresentation (pp. 3–54). Cambridge: MIT Press.Google Scholar
  3. Barman, C. (1999). Students' views about scientists and school science: Engaging K-8 teachers in a national study. Journal of Science Teacher Education, 10, 43–54. doi: 10.1023/1009424713416.CrossRefGoogle Scholar
  4. Beilock, S. L., Gunderson, E. A., Ramirez, G., & Levine, S. C. (2010). Female teachers’ math anxiety affects girls’ math achievement. Proceedings of the National Academy of Sciences, 107, 1860–1863. doi: 10.1073/pnas.0910967107.CrossRefGoogle Scholar
  5. Beyer, S. (1999). Gender differences in the accuracy of grade expectancies and evaluations. Sex Roles, 41, 279–296. doi: 10.1023/A:1018864803330.CrossRefGoogle Scholar
  6. Beyer, S., Rynes, K., Perrault, J., Hay, K., & Haller, S. (2003). Gender differences in computer science students. Paper presented at the Proceedings of the Thirty-fourth SIGCSE Technical Symposium on Computer Science Education, New York, NY. doi: 10.1145/611892.611930
  7. Borg, A. (1999). What draws women to and keeps women in computing? The Annuals of the New York Academy of Sciences, 869, 102–105. doi: 10.1111/j.1749-6632.1999.tb08362.x.CrossRefGoogle Scholar
  8. Buldu, M. (2006). Young children's perceptions of scientists: A preliminary study. Educational Research, 48, 121–132. doi: 10.1080/00131880500498602.CrossRefGoogle Scholar
  9. Bureau of Labor Statistics. (2005). Occupational Outlook Handbook, 2004–05 Edition: U.S. Department of Labor.Google Scholar
  10. Ceci, S. J., Williams, W. M., & Barnett, S. M. (2009). Women’s underrepresentation in science: Sociocultural and biological considerations. Psychological Bulletin, 135, 218–261. doi: 10.1037/a0014412.PubMedCrossRefGoogle Scholar
  11. Cejka, M. A., & Eagly, A. H. (1999). Gender-stereotypic images of occupations correspond to the sex segregation of employment. Personality and Social Psychology Bulletin, 25, 413–423. doi: 10.1177/0146167299025004002.CrossRefGoogle Scholar
  12. Chambers, D. W. (1983). Stereotypic images of the scientist: The draw a scientist test. Science Education, 67, 255–265. doi: 10.1002/sce.3730670213.CrossRefGoogle Scholar
  13. Charles, M., & Bradley, K. (2006). A matter of degrees: Female underrepresentation in computer science programs cross-nationally. In J. M. Cohoon & W. Aspray (Eds.), Women and information technology: Research on underrepresentation (pp. 183–203). Cambridge: MIT Press.Google Scholar
  14. Cherney, I. D., & London, K. (2006). Gender-linked differences in the toys, television shows, computer games, and outdoor activities of 5-to 13-year-old children. Sex Roles, 54, 717–726. doi: 10.1007/s11199-006-9037-8.CrossRefGoogle Scholar
  15. Cheryan, S., & Plaut, V. C. (2010). Explaining underrepresentation: A theory of precluded interest. Sex Roles, 63, 475–488. doi: 10.1007/s11199-010-9835-x.PubMedCrossRefGoogle Scholar
  16. Cheryan, S., Plaut, V. C., Davies, P. G., & Steele, C. M. (2009). Ambient belonging: How stereotypical cues impact gender participation in computer science. Journal of Personality and Social Psychology, 97, 1045–1060. doi: 10.1037/a0016239.PubMedCrossRefGoogle Scholar
  17. Cheryan, S., Meltzoff, A. N., & Kim, S. (2011a). Classrooms matter: The design of virtual classrooms influences gender disparities in computer science classes. Computers in Education, 57, 1825–1835. doi: 10.1016/j.compedu.2011.02.004.CrossRefGoogle Scholar
  18. Cheryan, S., Siy, J. O., Vichayapai, M., Drury, B., & Kim, S. (2011b). Do female and male role models who embody STEM stereotypes hinder women's anticipated success in STEM? Social Psychological and Personality Science, 2, 656–664. doi: 10.1177/1948550611405218.CrossRefGoogle Scholar
  19. Clarke, V. A., & Teague, G. J. (1996). Characterizations of computing careers: Students and professionals disagree. Computers in Education, 26, 241–246. doi: 10.1016/0360-1315(96)00004-8.CrossRefGoogle Scholar
  20. Creamer, E., Lee, S., & Meszaros, P. (2007). Predicting women’s interest in and choice of a career in information technology: A statistical model. In C. J. Burger, E. G. Creamer, & P. S. Meszaros (Eds.), Reconfiguring the firewall: Recruiting women to information technology across cultures and continents (pp. 15–38). Wellesley: AK Peters Publishing.CrossRefGoogle Scholar
  21. Davies, P. G., Spencer, S. J., Quinn, D. M., & Gerhardstein, R. (2002). Consuming images: How television commercials that elicit stereotype threat can restrain women academically and professionally. Personality and Social Psychology Bulletin, 28, 1615–1628. doi: 10.1177/014616702237644.CrossRefGoogle Scholar
  22. de Cohen, C. C., & Deterding, N. (2009). Widening the net: National estimates of gender disparities in engineering. Journal of Engineering Education, 211–226.Google Scholar
  23. Deaux, K., & Lewis, L. L. (1984). Structure of gender stereotypes: Interrelationships among components and gender label. Journal of Personality and Social Psychology, 46, 991–1004. doi: 10.1037/0022-3514.46.5.991.CrossRefGoogle Scholar
  24. Diekman, A. B., Brown, E., Johnston, A., & Clark, E. (2010). Seeking congruity between goals and roles: A new look at why women opt out of STEM careers. Psychological Science, 21, 1051–1057. doi: 10.1177/0956797610377342.PubMedCrossRefGoogle Scholar
  25. Diekman, A. B., Clark, E. K., Johnston, A. M., Brown, E. R., & Steinberg, M. (2011). Malleability in communal goals and beliefs influences attraction to STEM careers: Evidence for a goal congruity perspective. Journal of Personality and Social Psychology, 87, 796–816. doi: 10.1037/a0025199.Google Scholar
  26. Dryburgh, H. (2000). Underrepresentation of girls and women in computer science: Classification of 1990s research. Journal of Educational Computing Research, 23, 181–202. doi: 10.2190/8RYV-9JWH-XQMB-QF41.CrossRefGoogle Scholar
  27. Eagly, A. H. (1987). Sex differences in social behavior: A social-role interpretation. Hillsdale, NJ, England: Lawrence Erlbaum Associates, Inc.Google Scholar
  28. Eagly, A. H., & Steffen, V. J. (1984). Gender stereotypes stem from the distribution of women and men into social roles. Journal of Personality and Social Psychology, 46, 735–754. doi: 10.1037/0022-3514.46.4.735.CrossRefGoogle Scholar
  29. El Nasser, H. (2012, April 12). Geek chic: 'Brogrammer?' Now that's hot, USA Today. Retrieved from
  30. Fennema, E., Peterson, P. L., Carpenter, T. P., & Lubinski, C. A. (1990). Teachers’ attributions and beliefs about girls, boys, and mathematics. Educational Studies in Mathematics, 21, 55–69. doi: 10.1007/BF00311015.CrossRefGoogle Scholar
  31. Finson, K. D. (2002). Drawing a scientist: What we do and do not know after fifty years of drawings. School Science and Mathematics, 102, 335–345. doi: 10.1111/j.1949-8594.2002.tb18217.x.CrossRefGoogle Scholar
  32. Finson, K. D. (2003). Applicability of the DAST-C to the images of scientists drawn by students of different racial groups. Journal of Elementary Science Education, 15, 15–26. doi: 10.1007/BF03174741.CrossRefGoogle Scholar
  33. Flick, L. (1990). Scientists in residence program improving children’s image of science and scientists. School Science and Mathematics, 90, 204–214. doi: 10.1111/j.1949-8594.1990.tb15536.x.CrossRefGoogle Scholar
  34. Fort, D. C., & Varney, H. L. (1989). How students see scientists: Mostly male, mostly White, and mostly benevolent. Science and Children, 26, 8–13.Google Scholar
  35. Fryberg, S., Markus, H. R., Oyserman, D., & Stone, J. M. (2008). Of warrior chiefs and Indian princesses: The psychological consequences of American Indian mascots on American Indians. Basic and Applied Social Psychology, 30, 208–218. doi: 10.1080/01973530802375003 Google Scholar
  36. Hannover, B., & Kessels, U. (2004). Self-to-prototype matching as a strategy for making academic choices. Why high school students do not like math and science. Learning and Instruction, 14, 51–67. doi: 10.1080/01973530802375003.CrossRefGoogle Scholar
  37. Harackiewicz, J. M., Rozek, C. S., Hulleman, C. S., & Hyde, J. S. (2012). Helping parents to motivate adolescents in mathematics and science: An experimental test. Psychological Science, 23, 899–906. doi: 10.1177/0956797611435530.PubMedCrossRefGoogle Scholar
  38. Hess, R. D., & Miura, I. T. (1985). Gender differences in enrollment in computer camps and classes. Sex Roles, 13, 193–203. doi: 10.1007/BF00287910.CrossRefGoogle Scholar
  39. Hong, L., & Page, S. E. (2004). Groups of diverse problem solvers can outperform groups of high-ability problem solvers. Proceedings of the National Academy of Sciences of the United States of America, 101, 16385–16389. doi: 10.1037/pnas.0403723101.PubMedCrossRefGoogle Scholar
  40. Jacobs, J. E. (1991). Influence of gender stereotypes on parent and child mathematics attitudes. Journal of Educational Psychology, 83, 518–527. doi: 10.1037/0022-0663.83.4.518.CrossRefGoogle Scholar
  41. Katz, D., & Braly, K. (1933). Racial stereotypes of one hundred college students. Journal of Abnormal and Social Psychology, 28, 280–290. doi: 10.1037/h0074049.CrossRefGoogle Scholar
  42. Kendall, L. (1999). Nerd nation: Images of nerds in US popular culture. International Journal of Cultural Studies, 2, 260–283. doi: 10.1177/136787799900200206.CrossRefGoogle Scholar
  43. Kiousis, S. (2001). Public trust or mistrust? perceptions of media credibility in the information age. Mass Communication & Society, 4, 381–403. doi: 10.1207/S15327825MCS0404_4.CrossRefGoogle Scholar
  44. Knight, M., & Cunningham, C. (2004). Draw an Engineer Test (DAET): Development of a tool to investigate students' ideas about engineers and engineering. Paper presented at the American Society for Engineering Education Annual Conference & Exposition, Salt Lake City, Utah.Google Scholar
  45. Lang, C. (2007). Twenty-first century Australian women and IT: Exercising the power of choice. Computer Science Education, 17, 215–226. doi: 10.1080/08993400701538120.CrossRefGoogle Scholar
  46. Lang, C., Craig, A., Fisher, J., & Forgasz, H. (2010). Dualisms: What women say about working in ICT. Paper presented at the Australasian Conference on Information Systems 2010 Proceedings, Brisbane, AU.Google Scholar
  47. Linde, N. (2011, July 13). Bringing girls into the science-major pipeline. The Chronicle of Higher Education. Retrieved from
  48. Lippa, R. (1998). Gender-related individual differences and the structure of vocational interests: The importance of the people–things dimension. Journal of Personality and Social Psychology, 74, 996–1009. doi: 10.1037//0022-3514.74.4.996.PubMedCrossRefGoogle Scholar
  49. Lippman, W. (1922). Public opinion. New York: Harcourt Brace.Google Scholar
  50. Margolis, J., & Fisher, A. (2002). Unlocking the clubhouse: Women in computing. Cambridge: MIT Press.Google Scholar
  51. Master, A., Markman, E. M., & Dweck, C. S. (2012). Thinking in categories or along a continuum: Consequences for children’s social judgments. Child Development, 83, 1145–1163. doi: 10.1111/j.1467-8624.2012.01774.x.PubMedCrossRefGoogle Scholar
  52. Mead, M., & Metraux, R. (1957). Image of the scientist among high-school students. Science, 126, 384–390. doi: 10.1126/science.126.3270.384.PubMedCrossRefGoogle Scholar
  53. Mercier, E. M., Barron, B., & O'Connor, K. M. (2006). Images of self and others as computer users: The role of gender and experience. Journal of Computer Assisted Learning, 22, 335–348. doi: 10.1111/j.1365-2729.2006.00182.x.CrossRefGoogle Scholar
  54. Morgan, C., Isaac, J. D., & Sansone, C. (2001). The role of interest in understanding the career choices of female and male college students. Sex Roles, 44, 295–320. doi: 10.1023/A:1010929600004.CrossRefGoogle Scholar
  55. National Science Foundation. (2002). Women, minorities, and persons with disabilities in science and engineering: 2002. Arlington, VA: Division of Science Resources Statistics.Google Scholar
  56. National Science Foundation. (2009). TABLE C-4. Bachelor's degrees, by sex and field: 1997–2006. Arlington, VA: Retrieved from
  57. Newton, L. D., & Newton, D. P. (1988). Primary children’s conceptions of science and the scientist: Is the impact of a National Curriculum breaking down the stereotype? International Journal of Science Education, 20, 1137–1149. doi: 10.1080/0950069980200909.CrossRefGoogle Scholar
  58. Nosek, B. A., Smyth, F. L., Sriram, N., Lindner, N. M., Devos, T., Ayala, A., et al. (2009). National differences in gender–science stereotypes predict national sex differences in science and math achievement. Proceedings of the National Academy of Sciences, 106, 10593–10597. doi: 10.1073/pnas.0809921106.CrossRefGoogle Scholar
  59. Oakes, P. J., Haslam, S. A., & Turner, J. C. (1994). Stereotyping and social reality. Malden: Blackwell Publishing.Google Scholar
  60. Paluck, E. L. (2010). Peer pressure against prejudice: A high school field experiment examining social network change. Journal of Experimental Social Psychology, 211, 350–358. doi: 10.1016/j.jesp.2010.11.017.Google Scholar
  61. Park, B., & Judd, C. M. (1990). Measures and models of perceived group variability. Journal of Personality and Social Psychology, 59, 173. doi: 10.1037/0022-3514.59.2.173.CrossRefGoogle Scholar
  62. Pion, G. M., & Lipsey, M. W. (1981). Public attitudes toward science and technology: What have the surveys told us? Public Opinion Quarterly, 45, 303–316. doi: 10.1086/268666.PubMedCrossRefGoogle Scholar
  63. Plaut, V. C., Garnett, F. G., Buffardi, L. E., & Sanchez-Burks, J. (2011). “What about me?” perceptions of exclusion and whites’ reactions to multiculturalism. Journal of Personality and Social Psychology, 101, 337–353. doi: 10.1037/a0022832.PubMedCrossRefGoogle Scholar
  64. Plaut, V. C., Cheryan, S., & Garnett, F. G. (in press). New frontiers in diversity research: Theoretical and practical implications. In E. Borgida & J. A. Bargh (Eds.), APA Handbook of Personality and Social Psychology: Vol. 1. Attitudes and Social Cognition. Washington D.C.: APA Books.Google Scholar
  65. Pronin, E., Steele, C. M., & Ross, L. (2004). Identity bifurcation in response to stereotype threat: Women and mathematics. Journal of Experimental Social Psychology, 40, 152–168. doi: 10.1016/S0022-1031(03)00088-X.CrossRefGoogle Scholar
  66. Schibeci, R. A. (1986). Images of science and scientists and science education. Science Education, 70, 139–149. doi: 10.1002/sce.3730700208.CrossRefGoogle Scholar
  67. Schibeci, R. A., & Sorensen, I. (1983). Elementary school children’s perceptions of scientists. School Science and Mathematics, 83, 14–20. doi: 10.1111/j.1949-8594.1983.tb10087.x.
  68. Schott, G., & Selwyn, N. (2000). Examining the “male, antisocial” stereotype of high computer users. Journal of Educational Computing Research, 23, 291–303. doi: 10.2190/V98R-5ETX-W9LY-WD3J.CrossRefGoogle Scholar
  69. Singh, K., Allen, K. R., Scheckler, R., & Darlington, L. (2007). Women in computer-related majors: A critical synthesis of research and theory from 1994 to 2005. Review of Educational Research, 77, 500–533. doi: 10.3102/0034654307309919.CrossRefGoogle Scholar
  70. Steinke, J. (2005). Cultural representations of gender and science. Science Communication, 27, 27–63. doi: 10.1177/1075547005278610.CrossRefGoogle Scholar
  71. Steinke, J., Lapinski, M. K., Crocker, N., Zietsman-Thomas, A., Williams, Y., Evergreen, S. H., et al. (2007). Assessing media influences on middle school–aged children’s perceptions of women in science using the Draw-A-Scientist Test (DAST). Science Communication, 29, 35–64. doi: 10.1177/1075547007306508.CrossRefGoogle Scholar
  72. Stout, J. G., Dasgupta, N., Hunsinger, M., & McManus, M. (2011). STEMing the tide: Using ingroup experts to inoculate women’s self-concept and professional goals in science, technology, engineering, and mathematics (STEM). Journal of Personality and Social Psychology, 100, 255–270. doi: 10.1037/a0021385.PubMedCrossRefGoogle Scholar
  73. Walton, G., & Cohen, G. (2007). A question of belonging: Race, social fit, and achievement. Journal of Personality and Social Psychology, 92, 82–96. doi: 10.1037/0022-3514.92.1.82.PubMedCrossRefGoogle Scholar
  74. Williams, M. J., & Eberhardt, J. L. (2008). Biological conceptions of race and the motivation to cross racial boundaries. Journal of Personality and Social Psychology, 94, 1033–1047. doi: 10.1037/0022-3514.94.6.1033.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Sapna Cheryan
    • 1
    Email author
  • Victoria C. Plaut
    • 2
  • Caitlin Handron
    • 1
  • Lauren Hudson
    • 2
  1. 1.Department of PsychologyUniversity of WashingtonSeattleUSA
  2. 2.School of LawUniversity of California, BerkeleyBerkeleyUSA

Personalised recommendations