Sex Roles

, Volume 67, Issue 11–12, pp 630–645 | Cite as

The Role of Personality in Relation to Gender Differences in School Subject Choices in Pre-University Education

  • Hanke KorpershoekEmail author
  • Hans Kuyper
  • M. P. C. van der Werf
Original Article


Boys and girls to some extent differ in personality characteristics while they also prefer different school subjects in secondary education. This study has attempted to unravel the relations among gender, personality, and students’ subject choices. The study was based on a sample of 1,740 9th grade pre-university students throughout the Netherlands (average age 15 years). We used the Five-Factor Personality Inventory (FFPI) of Hendriks, Hofstee, and De Raad (1999a) to measure the students’ personalities. The research questions were: (1) To what extent are students’ personality characteristics related to their subject choices in secondary education? (2) Do students’ personality characteristics mediate the gender – subject choice relation? And if yes, which personality characteristics are responsible for this? (3) Is the relation between personality characteristics and subject choices different for boys and girls? We found several associations between personality characteristics and students’ subject choices. Although the relationship between gender and students’ subject choices was slightly attenuated after the inclusion of the personality characteristics in the multinomial logistic regression analyses, gender remained an important predictor of the students’ choices. The personality factor Extraversion partially mediated the relation between gender and students’ choice of advanced mathematics, chemistry, and physics versus a more language and culturally-oriented set of school subjects. Furthermore, gender was found to moderate the relation between the personality factor Autonomy and students’ choice of advanced mathematics, chemistry, and physics versus a more language and culturally-oriented set of school courses.


Personality Gender differences Subject choices Vocational interests Secondary education Mediation Moderation 


  1. Baron, R. M., & Kenny, D. A. (1986). The moderator mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51, 1173–1182. doi: 10.1037/0022-3514.51.6.1173.PubMedCrossRefGoogle Scholar
  2. Boone, C., Van Olffen, W., & Roijakkers, N. (2004). Selection on the road to a career: Evidence of personality sorting in educational choice. Journal of Career Development, 31, 61–78. doi: 10.1177/089484530403100105.CrossRefGoogle Scholar
  3. Borges, N. J., & Osmon, W. R. (2001). Personality and medical specialty choice: Technique orientation versus people orientation. Journal of Vocational Behavior, 58, 22–35. doi: 10.1006/jvbe.2000.1761.CrossRefGoogle Scholar
  4. Cattell, R. B., Cattell, A. K., & Cattell, H. E. (1993). Sixteen personality factor questionnaire (5th ed.). Champaign: Institute for Personality and Ability Testing.Google Scholar
  5. Ceci, S. J., Williams, M., & Barnett, S. M. (2009). Women’s underrepresentation in science. Sociocultural and biological considerations. Psychological Bulletin, 135, 218–261. doi: 10.1037/a0014412.PubMedCrossRefGoogle Scholar
  6. Correll, S. J. (2001). Gender and the career choice process: The role of biased self-assessments. The American Journal of Sociology, 106, 1691–1731. doi: 10.1086/321299.CrossRefGoogle Scholar
  7. Costa, P. T., & McCrae, R. R. (1992). Revised NEO Personality Inventory (NEO-PI-R) and NEO Five-Factor Inventory (NEO-FFI) professional manual. Odessa: Psychological Assessment Resources.Google Scholar
  8. Costa, P. T., Jr., Terracciano, A., & McCrae, R. R. (2001). Gender differences in personality traits across cultures: Robust and surprising findings. Journal of Personality and Social Psychology, 81, 322–331. doi: 10.1037/0022-3514.81.2.322.PubMedCrossRefGoogle Scholar
  9. Crombie, G., Sinclair, N., Silverthorn, N., Byrne, B. M., Dubois, D. L., & Trinneer, A. (2005). Predictors of young adolescents’ math grades and course enrolment intentions: Gender similarities and differences. Sex Roles, 52, 351–367. doi: 10.1007/s11199-005-2678-1.CrossRefGoogle Scholar
  10. De Boer, H., Hendriks, A. A. J., Kuyper, H., & van der Werf, M. P. C. (2010). VOCL’99: De middellange termijn. Schoolloopbanen van leerlingen tot en met het eindexamen [VOCL’99: The medium term. Students’ progress until the Final School Examinations]. Groningen, The Netherlands: GION.Google Scholar
  11. De Fruyt, F., & Mervielde, I. (1996). Personality and interest as predictors of educational streaming and achievement. European Journal of Personality, 10, 405–425. doi:10.1002/(SICI)1099-0984(199612)10:5<405::AID-PER255>3.0.CO;2-M.CrossRefGoogle Scholar
  12. De Fruyt, F., & Mervielde, I. (1997). The five-factor model of personality and Holland’s RIASEC interest types. Personality and Individual Differences, 23, 87–103. doi: 10.1016/S0191-8869(97)00004-4.CrossRefGoogle Scholar
  13. Dryler, H. (1999). The impact of school and classroom characteristics on educational choices by boys and girls: A multilevel analysis. Acta Sociologica, 42, 300–319.Google Scholar
  14. Eccles, J. S. (1987). Gender roles and women’s achievement-related decisions. Psychology of Women Quarterly, 11, 135–172. doi: 10.1111/j.1471-6402.1987.tb00781.x.CrossRefGoogle Scholar
  15. Eccles, J. S. (2005). Subjective task value and the Eccles et al. model of achievement-related choices. In A. J. Elliot & C. S. Dweck (Eds.), Handbook of competence and motivation (pp. 105–121). New York: The Guilford Press.Google Scholar
  16. Eccles, J., Adler, T. F., Futterman, R., Goff, S. B., Kaczala, C. M., Meece, J. L., & Midgley, C. (1985). Self-perceptions, task perceptions, socializing influences and the decision to enroll in mathematics. In S. F. Chipman, L. R. Brush, & D. M. Wilson (Eds.), Women and mathematics; balancing the equation (pp. 95–121). Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  17. Else-Quest, N. M., Hyde, J. S., & Linn, M. C. (2010). Cross-national patterns of gender differences in mathematics: A meta-analysis. Psychological Bulletin, 136, 103–127. doi: 10.1037/a0018053.PubMedCrossRefGoogle Scholar
  18. Elsworth, G. R., Harvey-Beavis, A., Ainley, J., & Fabris, S. (1999). Generic interests and school subject choice. Educational Research and Evaluation, 5, 290–318. doi: 10.1076/edre. Scholar
  19. Frost, L. A., Hyde, J. S., & Fennema, E. (1994). Gender, mathematics performance, and mathematics-related attitudes and affect: A meta-analytic synthesis. International Journal of Educational Research, 21, 373–385. doi: 10.1016/S0883-0355(06)80026-1.CrossRefGoogle Scholar
  20. Goldberg, L. R. (1993). The structure of phenotypic personality traits. American Psychologist, 48, 26–34. doi: 10.1037/0003-066X.48.1.26.PubMedCrossRefGoogle Scholar
  21. Goldberg, L. R., Sweeney, D., Merenda, P. F., & Hughes, J. E. (1998). Demographic variables and personality: The effects of gender, age, education, and ethnic/racial status on self-descriptions of personality attributes. Personality and Individual Differences, 24, 393–403. doi: 10.1016/S0191-8869(97)00110-4.CrossRefGoogle Scholar
  22. Hendriks, A. A. J., Hofstee, W. K. B., & de Raad, B. (1999a). The Five-Factor Personality Inventory (FFPI). Personality and Individual Differences, 27, 307–325. doi: 10.1016/S0191-8869(98)00245-1.CrossRefGoogle Scholar
  23. Hendriks, A. A. J., Hofstee, W. K. B., & de Raad, B. (1999b). Handleiding bij de Five-Factor Personality Inventory (FFPI) [The Five-Factor Personality Inventory (FFPI): Professional manual]. Lisse, The Netherlands: Swets Test Publishers.Google Scholar
  24. Hendriks, A. A. J., Kuyper, H., Offringa, G. J., & van der Werf, M. P. C. (2008). Assessing young adolescents’ personality with the Five-Factor Personality Inventory. Assessment, 15, 304–316. doi: 10.1177/1073191107313761.CrossRefGoogle Scholar
  25. Hendriks, A. A. J., van der Werf, M. P. C., & Kuyper, H. (2010). Personality development in Dutch adolescents. Manuscript in preparation.Google Scholar
  26. Hofstee, W. K. B., & Hendriks, A. A. J. (1998). The use of scores anchored at the scale midpoint in reporting individuals’ traits. European Journal of Personality, 12, 219–228. doi: 10.1002/(SICI)1099-0984(199805/06)12:3<219::AID-PER315>3.0.CO;2-Y.CrossRefGoogle Scholar
  27. Holland, J. L. (1997). Making vocational choices: A theory of vocational personalities and work environments (3rd ed.). Odessa: Psychological Assessment Resources.Google Scholar
  28. Hong, Z.-R., & Lin, H.-S. (2010). An investigation of students’ personality traits and attitudes toward science. International Journal of Science Education, 33, 1001–1028. doi: 10.1080/09500693.2010.524949.CrossRefGoogle Scholar
  29. Jonsson, J. O. (1999). Explaining sex differences in educational choice; An empirical assessment of a rational choice model. European Sociological Review, 15, 391–404.CrossRefGoogle Scholar
  30. Kamata, A., Turhan, A., Darandari, E. (2003, April). Estimating reliability for multidimensional composite scale scores. Paper presented at the annual meeting of American Educational Research Association, Chicago, IL.Google Scholar
  31. Klein, K. L., & Weiner, Y. (1977). Interest congruency as a moderator of the relationships between job tenure and job satisfaction and mental health. Journal of Vocational Behavior, 10, 92–98. doi: 10.1016/0001-8791(77)90045-8.CrossRefGoogle Scholar
  32. Korpershoek, H. (2010). Search for science talent in the Netherlands. Groningen: GION.Google Scholar
  33. Korpershoek, H., Kuyper, H., Bosker, R. J., & van der Werf, M. P. C. (2012). Students’ preconceptions and perceptions of science-oriented studies. International Journal of Science Education. Advance online publication. doi: 10.1080/09500693.2012.679324.
  34. Korpershoek, H., Kuyper, H., van der Werf, M. P. C., & Bosker, R. J. (2010). Who ‘fits’ the science & technology profile? Personality differences in secondary education. Journal of Research in Personality, 44, 649–654. doi: 10.1016/j.jrp.2010.08.010.CrossRefGoogle Scholar
  35. Kuyper, H., & van der Werf, M. P. C. (2003). VOCL’99-1; De resultaten in het eerste leerjaar [VOCL’99-1; The results in the first year]. Groningen, The Netherlands: GION.Google Scholar
  36. Lapan, R. T., Shaughnessy, P., & Boggs, K. (1996). Efficacy expectations and vocational interests as mediators between sex and choice of math/science college majors: A longitudinal study. Journal of Vocational Behavior, 49, 277–291. doi: 10.1006/jvbe.1996.0044.PubMedCrossRefGoogle Scholar
  37. Larson, L. M., Rottinghaus, P. J., & Borgen, F. H. (2002). Meta-analyses of big six interests and big five personality factors. Journal of Vocational Behavior, 61, 217–239. doi: 10.1006/jvbe.2001.1854.CrossRefGoogle Scholar
  38. Lesko, A. C., & Corpus, J. H. (2006). Discounting the difficult: How high math-identified women respond to stereotype threat. Sex Roles, 54, 113–125. doi: 10.1007/s11199-005-8873-2.CrossRefGoogle Scholar
  39. Leslie, L. L., McClure, G. T., & Oaxaca, R. L. (1998). Women and minorities in science en engineering: A life sequence analysis. Journal of Higher Education, 69, 239–276.CrossRefGoogle Scholar
  40. Lightbody, P., & Siann, G. (1997). A fulfilling career? Factors which influence women’s choice of profession. Educational Studies, 23, 25–37. doi: 10.1080/0305569970230102.CrossRefGoogle Scholar
  41. Lips, H. M. (1992). Gender and science related attitudes as predictors of college students’ academic choices. Journal of Vocational Behavior, 40, 62–81. doi: 10.1016/0001-8791(92)90047-4.CrossRefGoogle Scholar
  42. Lounsbury, J. W., Smith, R. M., Levy, J. J., Leong, F. T., & Gibson, L. W. (2009). Personality characteristics of business majors as defined by the big five and narrow personality traits. The Journal of Education for Business, 84, 200–205. doi: 10.3200/JOEB.84.4.200-205.CrossRefGoogle Scholar
  43. Lubbers, M. J., van der Werf, M. P. C., Kuyper, H., & Hendriks, A. A. J. (2010). Does homework behavior mediate the relation between personality and academic performance? Personality and Individual Differences, 35, 1231–1239. doi: 10.1016/j.lindif.2010.01.005.Google Scholar
  44. Morgan, C., Isaac, J. D., & Sansone, C. (2001). The role of interest in understanding the career choices of female and male college students. Sex Roles, 44, 295–320. doi: 10.1023/A:1010929600004.CrossRefGoogle Scholar
  45. Mullis, I. V. S., Martin, M. O., Robitaille, D. F., & Foy, P. (2009). TIMSS Advanced 2008 International report. Findings from IEA’s trends in international mathematics and science study at the twelfth grade. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College.Google Scholar
  46. Muzzatti, B., & Agnoli, F. (2007). Gender and mathematics: Attitudes and stereotype threat susceptibility in Italian Children. Developmental Psychology, 43, 747–758. doi: 10.1037/0012-1649.43.3.747.PubMedCrossRefGoogle Scholar
  47. Organisation for Economic Co-operation and Development. (2009). Top of the class – high performers in science in PISA 2006. Paris: OECD.Google Scholar
  48. Osborne, J., Simon, S., & Collins, S. (2003). Attitudes towards science: A review of the literature and its implications. International Journal of Science Education, 25, 1049–1079. doi: 10.1080/0950069032000032199.CrossRefGoogle Scholar
  49. Packard, B. W., & Nguyen, D. (2003). Science career-related possible selves of adolescent girls: A longitudinal study. Journal of Career Development, 29, 251–263. doi: 10.1023/A:1022939512735.Google Scholar
  50. Pinxten, M., De Fraine, B., Van Den Noortgate, W., Van Damme, J., & Anumendem, D. (2012). Educational choice in secondary school in Flanders: The relative impact of occupational interests on option choice. Educational Research and Evaluation, 18, 541–569. doi: 10.1080/13803611.2012.702991.CrossRefGoogle Scholar
  51. Pullmann, H., Raudsepp, L., & Allik, J. (2006). Stability and change in adolescents’ personality: A longitudinal study. European Journal of Personality, 25, 92–104. doi: 10.1002/per.611.Google Scholar
  52. Roger, A., & Duffield, J. (2000). Factors underlying persistent gendered option choices in school science and technology in Scotland. Gender and Education, 12, 367–383. doi: 10.1080/713668300.CrossRefGoogle Scholar
  53. Rosenbloom, J. L., Ash, R. A., Dupont, B., & Coder, L. (2008). Why are there so few women in information technology? Assessing the role of personality in career choices. Journal of Economic Psychology, 29, 543–554. doi: 10.1016/j.joep.2007.09.005.CrossRefGoogle Scholar
  54. Schmader, T., Johns, M., & Barquissau, M. (2004). The costs of accepting gender differences: The role of stereotype endorsement in women’s experience in the math domain. Sex Roles, 50, 835–850. doi: 10.1023/B:SERS.0000029101.74557.a0.CrossRefGoogle Scholar
  55. Schneider, B., Smith, D. B., & Goldstein, H. W. (2000). Attraction-selection-attrition: Toward a person-environment psychology of organizations. In W. B. Walsh, K. H. Craik, & R. H. Price (Eds.), Person-environment psychology: New directions and perspectives (2nd ed., pp. 61–85). Mahwah: Lawrence Erlbauw Associates, Inc.Google Scholar
  56. Sells, L. W. (1980). Mathematics: The invisible filter. Engineering Education, 70, 340–341.Google Scholar
  57. Smith, E. (2010). Women into science and engineering? Gendered participation in higher education STEM subjects. British Educational Research Journal, 37, 993–1014. doi: 10.1080/01411926.2010.515019.CrossRefGoogle Scholar
  58. Statistics Netherlands. (2011). Statline. Voorburg/Heerlen, The Netherlands: CBS.Google Scholar
  59. Steinmayr, R., & Spinath, B. (2009). What explains boys’ stronger confidence in their intelligence? Sex Roles, 61, 736–749. doi: 10.1007/s11199-009-9675-8.CrossRefGoogle Scholar
  60. Stipek, D. J., & Gralinski, J. H. (1991). Gender differences in children’s achievement-related beliefs and emotional responses to success and failure in mathematics. Journal of Educational Psychology, 83, 361–371. doi: 10.1037/0022-0663.83.3.361.CrossRefGoogle Scholar
  61. Stokking, K. M. (2000). Predicting the choice of physics in secondary education. International Journal of Science Education, 22, 1261–1283. doi: 10.1080/095006900750036253.CrossRefGoogle Scholar
  62. Tokar, D. M., & Swanson, J. L. (1995). Evaluation of the correspondence between Holland’s vocational personality typology and the five-factor model of personality. Journal of Vocational Behavior, 46, 89–108. doi: 10.1006/jvbe.1995.1006.CrossRefGoogle Scholar
  63. Uerz, D., Dekkers, H., & Beguin, A. (2004). Mathematics and language skills and the choice of science subjects in secondary education. Educational Research and Evaluation, 10, 163–182. doi: 10.1076/edre. Scholar
  64. Van de Gaer, E., Pustjens, H., van Damme, J., & de Munter, A. (2008). Mathematics participation and mathematics achievement across secondary school: The role of gender. Sex Roles, 59, 568–585. doi: 10.1007/s11199-008-9455-x.CrossRefGoogle Scholar
  65. Van Dijk, H., & Tellegen, P. J. (1994). Handleiding, testboekje, instructieboekje GIVO, Groninger intelligentietest voor voortgezet onderwijs. [Manual, test book, instruction book GIVO, Groninger intelligence test for secondary education]. Lisse, The Netherlands: Swets & Zeitlinger.Google Scholar
  66. Van Langen, A. (2005). Unequal participation in mathematics and science education. Nijmegen: ITS.Google Scholar
  67. Van Langen, A., & Dekkers, H. (2005). Cross-national differences in participating in tertiary science, technology, engineering and mathematics education. Comparative Education, 41, 329–350. doi: 10.1080/03050060500211708.CrossRefGoogle Scholar
  68. Van Langen, A., & Vierke, H. (2009). Wat bepaalt de keuze voor een natuurprofiel? De invloed van de leerling, de school, de ouders en de peergroup [What determines choosing a science-oriented study profile? The impact of the student, the school, the parents and teh peergroup]. Den Haag, The Netherlands: Platform Beta Techniek.Google Scholar
  69. Walsh, W. B. (2001). The changing nature of the science of vocational psychology. Journal of Vocational Behavior, 59, 262–274. doi: 10.1006/jvbe.2001.1832.CrossRefGoogle Scholar
  70. Watt, H. M. G., & Eccles, J. S. (Eds.). (2008). Gender and occupational outcomes: Longitudinal assessments of individual, social, and cultural influences. Washington¸ DC: American Psychological Association.Google Scholar
  71. Weinburgh, M. (1995). Gender differences in student attitudes toward science: A meta-analysis of the literature from 1970 to 1991. Journal of Research in Science Teaching, 32, 387–398. doi: 10.1002/tea.3660320407.CrossRefGoogle Scholar
  72. Woolnough, B. (1994). Why students’ choose physics, or reject it. Physics Education, 29, 368–374. doi: 10.1088/0031-9120/29/6/006.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Hanke Korpershoek
    • 1
    Email author
  • Hans Kuyper
    • 1
  • M. P. C. van der Werf
    • 1
  1. 1.GION – Institute for Educational ResearchUniversity of GroningenGroningenThe Netherlands

Personalised recommendations