The coauthorship networks of the most productive European researchers

Abstract

The world of science possesses an inherent inequality in the distribution of research output and impact. Only a small minority of researchers is responsible for the majority of the knowledge production. However, little is known about the factors that might explain the prestige and the working habits of these researchers. In this paper, we therefore examine the coauthorship networks of the most productive European researchers over a 12-year time window, between the years 2007 and 2018. Explicitly, we look at the impact that these collaborative structures have upon the citations of the researchers. We show that highly productive researchers gain benefits in terms of citations by increasing their research output, by embedding themselves in large geographically dispersed coauthorship networks, as well as by publishing with highly cited collaborators. These results substantiate a prestige effect (the best tend to collaborate with the best) that governs the behaviour of the most productive researchers. Our study thus contributes to the currently coalescing literature on profiling the European research elite, and we hope it will be informative to policy-makers in their efforts of driving Europe towards an integrated research area.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Abbasi, A. (2013). h-Type hybrid centrality measures for weighted networks. Scientometrics, 96(2), 633–640. https://doi.org/10.1007/s11192-013-0959-y.

    Article  Google Scholar 

  2. Abbasi, A., Altmann, J., & Hossain, L. (2011a). Identifying the effects of co-authorship networks on the performance of scholars: A correlation and regression analysis of performance measures and social network analysis measures. Journal of Informetrics, 5(4), 594–607. https://doi.org/10.1016/j.joi.2011.05.007.

    Article  Google Scholar 

  3. Abbasi, A., Altmann, J., & Hwang, J. (2010). Evaluating scholars based on their academic collaboration activities: Two indices, the RC-index and the CC-index, for quantifying collaboration activities of researchers and scientific communities. Scientometrics, 83(1), 1–13. https://doi.org/10.1007/s11192-009-0139-2.

    Article  Google Scholar 

  4. Abbasi, A., Chung, K. S. K., & Hossain, L. (2012a). Egocentric analysis of co-authorship network structure, position and performance. Information Processing and Management, 48(4), 671–679. https://doi.org/10.1016/j.ipm.2011.09.001.

    Article  Google Scholar 

  5. Abbasi, A., Hossain, L., & Leydesdorff, L. (2012b). Betweenness centrality as a driver of preferential attachment in the evolution of research collaboration networks. Journal of Informetrics, 6(3), 403–412. https://doi.org/10.1016/j.joi.2012.01.002.

    Article  Google Scholar 

  6. Abbasi, A., Hossain, L., Uddin, S., & Rasmussen, K. J. R. (2011b). Evolutionary dynamics of scientific collaboration networks: Multi-levels and cross-time analysis. Scientometrics, 89(2), 687–710. https://doi.org/10.1007/s11192-011-0463-1.

    Article  Google Scholar 

  7. Abbasi, A., & Jaafari, A. (2013). Research impact and scholars’ geographical diversity. Journal of Informetrics, 7(3), 683–692. https://doi.org/10.1016/j.joi.2013.04.004.

    Article  Google Scholar 

  8. Abbasi, A., Jalili, M., & Sadeghi-Niaraki, A. (2018). Influence of network-based structural and power diversity on research performance. Scientometrics, 117(1), 579–590. https://doi.org/10.1007/s11192-018-2879-3.

    Article  Google Scholar 

  9. Abramo, G., & D’Angelo, C. A. (2015). The relationship between the number of authors of a publication, its citations and the impact factor of the publishing journal: Evidence from Italy. Journal of Informetrics, 9(4), 746–761. https://doi.org/10.1016/j.joi.2015.07.003.

    Article  Google Scholar 

  10. Abramo, G., D’Angelo, C. A., & Di Costa, F. (2019). The collaboration behavior of top scientists. Scientometrics, 118(1), 215–232. https://doi.org/10.1007/s11192-018-2970-9.

    Article  Google Scholar 

  11. Andrikopoulos, A., Bekiaris, M., & Kostaris, K. (2020). Stars in a small world: Social networks in auditing research. Scientometrics, 122(1), 625–643. https://doi.org/10.1007/s11192-019-03272-z.

    Article  Google Scholar 

  12. Antoniou, G. A., Antoniou, S. A., Georgakarakos, E. I., Sfyroeras, G. S., & Georgiadis, G. S. (2015). Bibliometric analysis of factors predicting increased citations in the vascular and endovascular literature. Annals of Vascular Surgery, 29(2), 286–292. https://doi.org/10.1016/j.avsg.2014.09.017.

    Article  Google Scholar 

  13. Badar, K., Frantz, T. L., & Jabeen, M. (2016). Research performance and degree centrality in co-authorship networks: The moderating role of homophily. Aslib Journal of Information Management, 68(6), 756–771. https://doi.org/10.1108/AJIM-07-2016-0103.

    Article  Google Scholar 

  14. Badar, K., Hite, J. M., & Ashraf, N. (2015). Knowledge network centrality, formal rank and research performance: Evidence for curvilinear and interaction effects. Scientometrics, 105(3), 1553–1576. https://doi.org/10.1007/s11192-015-1652-0.

    Article  Google Scholar 

  15. Badar, K., Hite, J. M., & Badir, Y. F. (2013). Examining the relationship of co-authorship network centrality and gender on academic research performance: the case of chemistry researchers in Pakistan. Scientometrics, 94(2), 755–775. https://doi.org/10.1007/s11192-012-0764-z.

    Article  Google Scholar 

  16. Badar, K., Hite, J. M., & Badir, Y. F. (2014). The moderating roles of academic age and institutional sector on the relationship between co-authorship network centrality and academic research performance. Aslib Journal of Information Management, 66(1), 38–53. https://doi.org/10.1108/AJIM-05-2013-0040.

    Article  Google Scholar 

  17. Barabási, A. L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A: Statistical Mechanics and Its Applications, 311(3–4), 590–614. https://doi.org/10.1016/S0378-4371(02)00736-7.

    MathSciNet  Article  MATH  Google Scholar 

  18. Benevenuto, F., Laender, A. H. F., & Alves, B. L. (2016). The H-index paradox: Your coauthors have a higher H-index than you do. Scientometrics, 106(1), 469–474. https://doi.org/10.1007/s11192-015-1776-2.

    Article  Google Scholar 

  19. Biscaro, C., & Giupponi, C. (2014). Co-authorship and bibliographic coupling network effects on citations. PLoS ONE, 9(6), e99502. https://doi.org/10.1371/journal.pone.0099502.

    Article  Google Scholar 

  20. Bordons, M., Aparicio, J., González-Albo, B., & Díaz-Faes, A. A. (2015). The relationship between the research performance of scientists and their position in co-authorship networks in three fields. Journal of Informetrics, 9(1), 135–144. https://doi.org/10.1016/j.joi.2014.12.001.

    Article  Google Scholar 

  21. Borjas, G. J., & Doran, K. B. (2015). Which peers matter? The relative impacts of collaborators, colleagues, and competitors. Review of Economics and Statistics, 97(5), 1104–1117. https://doi.org/10.1162/REST_a_00472.

    Article  Google Scholar 

  22. Bornmann, L., & Daniel, H.-D. (2007). Multiple publication on a single research study: Does it pay? The influence of number of research articles on total citation counts in biomedicine. Journal of the American Society for Information Science and Technology, 58(8), 1100–1107. https://doi.org/10.1002/asi.20531.

    Article  Google Scholar 

  23. Bornmann, L., Schier, H., Marx, W., & Daniel, H.-D. (2012). What factors determine citation counts of publications in chemistry besides their quality? Journal of Informetrics, 6(1), 11–18. https://doi.org/10.1016/j.joi.2011.08.004.

    Article  Google Scholar 

  24. Boschini, A., & Sjögren, A. (2007). Is team formation gender neutral? Evidence from coauthorship patterns. Journal of Labor Economics, 25(2), 325–365. https://doi.org/10.1086/510764.

    Article  Google Scholar 

  25. Brass, D. J., Galaskiewicz, J., Greve, H. R., & Tsai, W. (2004). Taking stock of networks and organizations: A multilevel perspective. Academy of Management Journal, 47(6), 795–817. https://doi.org/10.5465/20159624.

    Article  Google Scholar 

  26. Chan, H. F., Önder, A. S., & Torgler, B. (2016). The first cut is the deepest: Repeated interactions of coauthorship and academic productivity in Nobel laureate teams. Scientometrics, 106(2), 509–524. https://doi.org/10.1007/s11192-015-1796-y.

    Article  Google Scholar 

  27. Chessa, A., Morescalchi, A., Pammolli, F., Penner, O., Petersen, A. M., & Riccaboni, M. (2013). Is Europe evolving toward an integrated research area? Science, 339(6120), 650–651. https://doi.org/10.1126/science.1227970.

    Article  Google Scholar 

  28. Collet, F., Robertson, D. A., & Lup, D. (2014). When does brokerage matter? Citation impact of research teams in an emerging academic field. Strategic Organization, 12(3), 157–179. https://doi.org/10.1177/1476127014530124.

    Article  Google Scholar 

  29. Cummings, J. N., & Kiesler, S. (2005). Collaborative research across disciplinary and organizational boundaries. Social Studies of Science, 35(5), 703–722. https://doi.org/10.1177/0306312705055535.

    Article  Google Scholar 

  30. Ding, Y. (2011). Scientific collaboration and endorsement: Network analysis of coauthorship and citation networks. Journal of Informetrics, 5(1), 187–203. https://doi.org/10.1016/j.joi.2010.10.008.

    MathSciNet  Article  Google Scholar 

  31. Ductor, L. (2015). Does co-authorship lead to higher academic productivity? Oxford Bulletin of Economics and Statistics, 77(3), 385–407. https://doi.org/10.1111/obes.12070.

    Article  Google Scholar 

  32. Fernández, A., Ferrándiz, E., & León, M. D. (2018). Patterns of academic scientific collaboration at a distance: Evidence from Southern European countries. In M. Jibu & Y. Osabe (Eds.), Scientometrics. Rijeka: InTech. https://doi.org/10.5772/intechopen.77370.

    Google Scholar 

  33. Freeman, R. B., & Huang, W. (2015). Collaborating with people like me: Ethnic coauthorship within the United States. Journal of Labor Economics, 33(S1), S289–S318. https://doi.org/10.1086/678973.

    Article  Google Scholar 

  34. Friemel, T. N. (2015). Opinion leadership| influence versus selection: A network perspective on opinion leadership. International Journal of Communication, 9, 1002–1022.

    Google Scholar 

  35. Gallotti, R., & De Domenico, M. (2019). Effects of homophily and academic reputation in the nomination and selection of Nobel laureates. Scientific Reports, 9(1), 17304. https://doi.org/10.1038/s41598-019-53657-6.

    Article  Google Scholar 

  36. Gazni, A., & Didegah, F. (2011). Investigating different types of research collaboration and citation impact: A case study of Harvard University’s publications. Scientometrics, 87(2), 251–265. https://doi.org/10.1007/s11192-011-0343-8.

    Article  Google Scholar 

  37. Gazni, A., Sugimoto, C. R., & Didegah, F. (2012). Mapping world scientific collaboration: Authors, institutions, and countries. Journal of the American Society for Information Science and Technology, 63(2), 323–335. https://doi.org/10.1002/asi.21688.

    Article  Google Scholar 

  38. Glänzel, W. (2001). Coauthorship patterns and trends in the sciences (1980–1998): A bibliometric study with implications for database indexing and search strategies. Library Trends, 50(3), 461–473.

    Google Scholar 

  39. Glänzel, W. (2014). Analysis of co-authorship patterns at the individual level. Transinformação, 26(3), 229–238. https://doi.org/10.1590/0103-3786201400030001.

    Article  Google Scholar 

  40. González-Alcaide, G., Pinargote, H., & Ramos, J. M. (2020). From cut-points to key players in co-authorship networks: A case study in ventilator-associated pneumonia research. Scientometrics, 123(2), 707–733. https://doi.org/10.1007/s11192-020-03404-w.

    Article  Google Scholar 

  41. Gossart, C., & Özman, M. (2009). Co-authorship networks in social sciences: The case of Turkey. Scientometrics, 78(2), 323–345. https://doi.org/10.1007/s11192-007-1963-x.

    Article  Google Scholar 

  42. Guan, J., Yan, Y., & Zhang, J. (2015a). How do collaborative features affect scientific output? Evidences from wind power field. Scientometrics, 102(1), 333–355. https://doi.org/10.1007/s11192-014-1311-x.

    Article  Google Scholar 

  43. Guan, J., Zhang, J., & Yan, Y. (2015b). The impact of multilevel networks on innovation. Research Policy, 44(3), 545–559. https://doi.org/10.1016/j.respol.2014.12.007.

    Article  Google Scholar 

  44. Guan, J. C., Zuo, K., Chen, K., & Yam, R. C. M. (2016). Does country-level R&D efficiency benefit from the collaboration network structure? Research Policy, 45(4), 770–784. https://doi.org/10.1016/j.respol.2016.01.003.

    Article  Google Scholar 

  45. Hâncean, M.-G., & Perc, M. (2016). Homophily in coauthorship networks of East European sociologists. Scientific Reports, 6, 36152. https://doi.org/10.1038/srep36152.

    Article  Google Scholar 

  46. Hâncean, M.-G., Perc, M., & Lerner, J. (2020). Data from: The coauthorship networks of the most productive European researchers. Zenodo. https://doi.org/10.5281/zenodo.3873772.

    Article  Google Scholar 

  47. Hâncean, M.-G., Perc, M., & Vlăsceanu, L. (2014). Fragmented Romanian sociology: Growth and structure of the collaboration network. PLoS ONE, 9(11), e113271. https://doi.org/10.1371/journal.pone.0113271.

    Article  Google Scholar 

  48. Hausman, J., Hall, B., & Griliches, Z. (1984). Econometric models for count data with an application to the Patents-R&D relationship (No. t0017) (p. t0017). Cambridge, MA: National Bureau of Economic Research. https://doi.org/10.3386/t0017.

    Google Scholar 

  49. Hilbe, J. M. (2011). Negative binomial regression (2nd ed.). Cambridge, New York: Cambridge University Press.

    Google Scholar 

  50. Hoekman, J., Frenken, K., & Tijssen, R. J. W. (2010). Research collaboration at a distance: Changing spatial patterns of scientific collaboration within Europe. Research Policy, 39(5), 662–673. https://doi.org/10.1016/j.respol.2010.01.012.

    Article  Google Scholar 

  51. Hou, H., Kretschmer, H., & Liu, Z. (2008). The structure of scientific collaboration networks in scientometrics. Scientometrics, 75(2), 189–202. https://doi.org/10.1007/s11192-007-1771-3.

    Article  Google Scholar 

  52. Jeong, H., Néda, Z., & Barabási, A. L. (2003). Measuring preferential attachment in evolving networks. Europhysics Letters (EPL), 61(4), 567–572. https://doi.org/10.1209/epl/i2003-00166-9.

    Article  Google Scholar 

  53. Katz, J. S., & Martin, B. R. (1997). What is research collaboration? Research Policy, 26(1), 1–18. https://doi.org/10.1016/S0048-7333(96)00917-1.

    Article  Google Scholar 

  54. Kwiek, M. (2016). The European research elite: A cross-national study of highly productive academics in 11 countries. Higher Education, 71(3), 379–397. https://doi.org/10.1007/s10734-015-9910-x.

    Article  Google Scholar 

  55. Kwiek, M. (2018). High research productivity in vertically undifferentiated higher education systems: Who are the top performers? Scientometrics, 115(1), 415–462. https://doi.org/10.1007/s11192-018-2644-7.

    Article  Google Scholar 

  56. Larivière, V., Gingras, Y., Sugimoto, C. R., & Tsou, A. (2015). Team size matters: Collaboration and scientific impact since 1900. Journal of the Association for Information Science and Technology, 66(7), 1323–1332. https://doi.org/10.1002/asi.23266.

    Article  Google Scholar 

  57. Levitt, J. M., & Thelwall, M. (2011). A combined bibliometric indicator to predict article impact. Information Processing and Management, 47(2), 300–308. https://doi.org/10.1016/j.ipm.2010.09.005.

    Article  Google Scholar 

  58. Li, E. Y., Liao, C. H., & Yen, H. R. (2013). Co-authorship networks and research impact: A social capital perspective. Research Policy, 42(9), 1515–1530. https://doi.org/10.1016/j.respol.2013.06.012.

    Article  Google Scholar 

  59. Liao, C. H. (2011). How to improve research quality? Examining the impacts of collaboration intensity and member diversity in collaboration networks. Scientometrics, 86(3), 747–761. https://doi.org/10.1007/s11192-010-0309-2.

    Article  Google Scholar 

  60. Long, J. A. (2019). jtools: Analysis and presentation of social scientific data. R package version 2.0.1. Retrieved May 31, 2020, from https://cran.r-project.org/package=jtools.

  61. Martín-Alcázar, F., Ruiz-Martínez, M., & Sánchez-Gardey, G. (2019). Assessing social capital in academic research teams: A measurement instrument proposal. Scientometrics, 121(2), 917–935. https://doi.org/10.1007/s11192-019-03212-x.

    Article  Google Scholar 

  62. McCarty, C., Jawitz, J. W., Hopkins, A., & Goldman, A. (2013). Predicting author h-index using characteristics of the co-author network. Scientometrics, 96(2), 467–483. https://doi.org/10.1007/s11192-012-0933-0.

    Article  Google Scholar 

  63. Medina, A. M. (2018). Why do ecologists search for co-authorships? Patterns of co-authorship networks in ecology (1977–2016). Scientometrics, 116(3), 1853–1865. https://doi.org/10.1007/s11192-018-2835-2.

    Article  Google Scholar 

  64. Merton, R. K. (1968). The Matthew Effect in science: The reward and communication systems of science are considered. Science, 159(3810), 56–63. https://doi.org/10.1126/science.159.3810.56.

    Article  Google Scholar 

  65. Moody, J. (2004). The Structure of a social science collaboration network: Disciplinary cohesion from 1963 to 1999. American Sociological Review, 69(2), 213–238. https://doi.org/10.1177/000312240406900204.

    Article  Google Scholar 

  66. Nature. (2019). The top 10 countries that dominate natural-sciences research, 570. https://doi.org/10.1038/d41586-019-01921-0.

  67. Newman, M. E. J. (2001). Clustering and preferential attachment in growing networks. Physical Review E, 64(2), 025102. https://doi.org/10.1103/PhysRevE.64.025102.

    Article  Google Scholar 

  68. Newman, M. E. J. (2004). Coauthorship networks and patterns of scientific collaboration. Proceedings of the National Academy of Sciences, 101(suppl 1), 5200. https://doi.org/10.1073/pnas.0307545100.

    Article  Google Scholar 

  69. O’brien, R. M. (2007). A caution regarding rules of thumb for variance inflation factors. Quality & Quantity, 41(5), 673–690. https://doi.org/10.1007/s11135-006-9018-6.

    Article  Google Scholar 

  70. Parreira, M. R., Machado, K. B., Logares, R., Diniz-Filho, J. A. F., & Nabout, J. C. (2017). The roles of geographic distance and socioeconomic factors on international collaboration among ecologists. Scientometrics, 113(3), 1539–1550. https://doi.org/10.1007/s11192-017-2502-z.

    Article  Google Scholar 

  71. Perc, M. (2010). Growth and structure of Slovenia’s scientific collaboration network. Journal of Informetrics, 4(4), 475–482. https://doi.org/10.1016/j.joi.2010.04.003.

    Article  Google Scholar 

  72. Perc, M. (2014). The Matthew effect in empirical data. Journal of the Royal Society Interface, 11(98), 20140378. https://doi.org/10.1098/rsif.2014.0378.

    Article  Google Scholar 

  73. Petersen, A. M. (2015). Quantifying the impact of weak, strong, and super ties in scientific careers. Proceedings of the National Academy of Sciences, 112(34), E4671–E4680. https://doi.org/10.1073/pnas.1501444112.

    Article  Google Scholar 

  74. Puuska, H.-M., Muhonen, R., & Leino, Y. (2014). International and domestic co-publishing and their citation impact in different disciplines. Scientometrics, 98(2), 823–839. https://doi.org/10.1007/s11192-013-1181-7.

    Article  Google Scholar 

  75. Ronda-Pupo, G. A., & Pham, T. (2018). The evolutions of the rich get richer and the fit get richer phenomena in scholarly networks: The case of the strategic management journal. Scientometrics, 116(1), 363–383. https://doi.org/10.1007/s11192-018-2761-3.

    Article  Google Scholar 

  76. Rotolo, D., & Messeni Petruzzelli, A. (2013). When does centrality matter? Scientific productivity and the moderating role of research specialization and cross-community ties. Journal of Organizational Behavior, 34(5), 648–670. https://doi.org/10.1002/job.1822.

    Article  Google Scholar 

  77. Sarigöl, E., Pfitzner, R., Scholtes, I., Garas, A., & Schweitzer, F. (2014). Predicting scientific success based on coauthorship networks. EPJ Data Science, 3(1), 9. https://doi.org/10.1140/epjds/s13688-014-0009-x.

    Article  Google Scholar 

  78. Scarazzati, S., & Wang, L. (2019). The effect of collaborations on scientific research output: The case of nanoscience in Chinese regions. Scientometrics, 121(2), 839–868. https://doi.org/10.1007/s11192-019-03220-x.

    Article  Google Scholar 

  79. Shoukri, M. M. (2018). Statistical analysis of health data using SAS and R (4th ed.). Boca Raton: CRC Press.

    Google Scholar 

  80. Sidone, O. J. G., Haddad, E. A., & Mena-Chalco, J. P. (2017). Scholarly publication and collaboration in Brazil: The role of geography. Journal of the Association for Information Science and Technology, 68(1), 243–258. https://doi.org/10.1002/asi.23635.

    Article  Google Scholar 

  81. Sugimoto, C. R., Robinson-Garcia, N., Murray, D. S., Yegros-Yegros, A., Costas, R., & Larivière, V. (2017). Scientists have most impact when they’re free to move. Nature, 550(7674), 29–31. https://doi.org/10.1038/550029a.

    Article  Google Scholar 

  82. Sun, L., & Rahwan, I. (2017). Coauthorship network in transportation research. Transportation Research Part A: Policy and Practice, 100, 135–151. https://doi.org/10.1016/j.tra.2017.04.011.

    Article  Google Scholar 

  83. Tu, J. (2019). What connections lead to good scientific performance? Scientometrics, 118(2), 587–604. https://doi.org/10.1007/s11192-018-02997-7.

    Article  Google Scholar 

  84. Uddin, S., Choudhury, N., & Hossain, M. E. (2019). A research framework to explore knowledge evolution and scholarly quantification of collaborative research. Scientometrics, 119(2), 789–803. https://doi.org/10.1007/s11192-019-03057-4.

    Article  Google Scholar 

  85. Venables, W. N., & Ripley, B. D. (2010). Modern applied statistics with S (4 ed., [Nachdr.].). New York: Springer.

  86. Wagner, C. S., Whetsell, T. A., & Leydesdorff, L. (2017). Growth of international collaboration in science: Revisiting six specialties. Scientometrics, 110(3), 1633–1652. https://doi.org/10.1007/s11192-016-2230-9.

    Article  Google Scholar 

  87. Wang, J. (2016). Knowledge creation in collaboration networks: Effects of tie configuration. Research Policy, 45(1), 68–80. https://doi.org/10.1016/j.respol.2015.09.003.

    Article  Google Scholar 

  88. Wang, L., Thijs, B., & Glänzel, W. (2015). Characteristics of international collaboration in sport sciences publications and its influence on citation impact. Scientometrics, 105(2), 843–862. https://doi.org/10.1007/s11192-015-1735-y.

    Article  Google Scholar 

  89. Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge, New York: Cambridge University Press.

    Google Scholar 

  90. Wuchty, S., Jones, B. F., & Uzzi, B. (2007). The Increasing dominance of teams in production of knowledge. Science, 316(5827), 1036–1039. https://doi.org/10.1126/science.1136099.

    Article  Google Scholar 

  91. Yin, Z., & Zhi, Q. (2017). Dancing with the academic elite: A promotion or hindrance of research production? Scientometrics, 110(1), 17–41. https://doi.org/10.1007/s11192-016-2151-7.

    Article  Google Scholar 

  92. Zhang, C., Bu, Y., Ding, Y., & Xu, J. (2018). Understanding scientific collaboration: Homophily, transitivity, and preferential attachment. Journal of the Association for Information Science and Technology, 69(1), 72–86. https://doi.org/10.1002/asi.23916.

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii (Grant No. PN-III-P1-1.1-TE- 2016-0362), The Slovenian Research Agency (Grant Nos. J1-2457, J1-9112, and P1-0403) and Deutsche Forschungsgemeinschaft (Grant No. LE 2237/2-1). We thank Ms. Laura Trandafir for her help in formatting Fig. 1.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marian-Gabriel Hâncean.

Appendix

Appendix

See Tables 5 and 6.

Table 5 European Union-based most productive researchers (egos) by country.
Table 6 The European Union-based coauthors (alters) by country.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hâncean, MG., Perc, M. & Lerner, J. The coauthorship networks of the most productive European researchers. Scientometrics (2020). https://doi.org/10.1007/s11192-020-03746-5

Download citation

Keywords

  • Highly productive researchers
  • Coauthorship networks
  • Citations
  • Research productivity