Advertisement

Software survey: ScientoPy, a scientometric tool for topics trend analysis in scientific publications

  • Juan Ruiz-RoseroEmail author
  • Gustavo Ramirez-Gonzalez
  • Jesus Viveros-Delgado
Article

Abstract

Bibliometric analysis is growing research filed supported in different tools. Some of these tools are based on network representation or thematic analysis. Despite years of tools development, still, there is the need to support merging information from different sources and enhancing longitudinal temporal analysis as part of trending topic evolution. We carried out a new scientometric open-source tool called ScientoPy and demonstrated it in a use case for the Internet of things topic. This tool contributes to merging problems from Scopus and Clarivate Web of Science sources, extracts and represents h-index for the analysis topic, and offers a set of possibilities for temporal analysis for authors, institutions, wildcards, and trending topics using four different visualizations options. This tool enables future bibliometric analysis in different emerging fields.

Keywords

ScientoPy Scientometrics Science mapping Bibliometrics Internet of things Wildcards 

Notes

Acknowledgements

This research is funded by Colciencias Doctoral scholarship, from the Departamento Administrativo de Ciencia, Tecnología e Innovación (647-2014) for the Ph.D. in Telematic Engineering at the Universidad del Cauca, Popayán, Colombia. Also, this work was supported by the Universidad del Cauca (501100005682).

References

  1. Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975.CrossRefGoogle Scholar
  2. Aria, M., & Cuccurullo, C. (2018) bibliometrix v 2.0.2, reference manual. Accessed December 17, 2018.Google Scholar
  3. Bailón-Moreno, R., Jurado-Alameda, E., & Ruiz-Baños, R. (2006). The scientific network of surfactants: Structural analysis. Journal of the American Society for Information Science and Technology, 57(7), 949–960.CrossRefGoogle Scholar
  4. Boerner, K., Huang, W., Linnemeier, M., Duhon, R. J., Phillips, P., Ma, N., et al. (2010). Rete-netzwerk-red: Analyzing and visualizing scholarly networks using the Network Workbench Tool. Scientometrics, 83(3), 863–876.CrossRefGoogle Scholar
  5. Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), 359–377.CrossRefGoogle Scholar
  6. Ciftler, B. S., Kadri, A., & Guevenc, I. (2017). IoT localization for bistatic passive UHF RFID systems with 3-D radiation pattern. IEEE Internet of Things Journal, 4(4, SI), 905–916.CrossRefGoogle Scholar
  7. Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011a). An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the fuzzy sets theory field. Journal of Informetrics, 5(1), 146–166.CrossRefGoogle Scholar
  8. Cobo, M. J., Lopez-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011b). Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62(7), 1382–1402.CrossRefGoogle Scholar
  9. Cobo, M. J., Lopez-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2012). SciMAT: A new science mapping analysis software tool. Journal of the American Society for Information Science and Technology, 63(8), 1609–1630.CrossRefGoogle Scholar
  10. Gezer, C., & Taskin, E. (2016). An Overview of oneM2M standard. In 2016 24th signal processing and communication application conference (SIU) (pp. 1705–1708). IEEE; Bulent Ecevit University, Department of Electrical and Electronic Engineering; Bulent Ecevit University, Department of Biomedical Engineering; Bulent Ecevit University, Department of Computer Engineering, Zonguldak, Turkey, May 16–19, 2016.Google Scholar
  11. Grauwin, S., & Jensen, P. (2011). Mapping scientific institutions. Scientometrics, 89(3), 943–954.CrossRefGoogle Scholar
  12. Harzing, A.-W. (2014). A longitudinal study of Google Scholar coverage between 2012 and 2013. Scientometrics, 98(1), 565–575.CrossRefGoogle Scholar
  13. Kim, J., Lim, H., Han, S., Jung, Y., & Lee, S. (2016). Compensation algorithm for misrecognition caused by hard pressure touch in plastic cover capacitive touch screen panels. Journal of Display Technology, 12(12), 1623–1628.CrossRefGoogle Scholar
  14. Kleinberg, J. (2003). Bursty and hierarchical structure in streams. Data Mining and Knowledge Discovery, 7(4), 373–397.MathSciNetCrossRefGoogle Scholar
  15. Lewis, D. M., & Alpi, K. M. (2017). Bibliometric network analysis and visualization for serials librarians: An introduction to Sci2. Serials Review, 43(3–4, SI), 239–245.CrossRefGoogle Scholar
  16. Mingers, J., & Leydesdorff, L. (2015). A review of theory and practice in scientometrics. European Journal of Operational Research, 246(1), 1–19.CrossRefzbMATHGoogle Scholar
  17. Moulin, T., & Simon, P. (2016). e-Health—The internet of things and telemedicine. Correspondances en Metabolismes Hormones Diabetes et Nutrition, 20(3), 58–64.Google Scholar
  18. Munoz-Organero, M., Ramirez, G. A., Munoz-Merino, P. J., & Kloos, C. D. (2011). Framework for contextualized learning ecosystems. In C. D. Kloos, D. Gillet, R. M. G. Garcia, F. Wild, & M. Wolpers (Eds.), Towards ubiquitous learning, EC-TEL 2011, volume 6964 of Lecture Notes in Computer Science. 6th European conference on technology-enhanced learning (EC-TEL), Palermo, Italy, September 20–23, 2011.Google Scholar
  19. Paethong, P., Sato, M., & Namiki, M. (2016). Low-power distributed NoSQL database for IoT middleware. In J. L. Mitrpanont (Ed.), 2016 Fifth ICT international student project conference (ICT-ISPC) (pp. 158–161). ICT; Mahidol University, Faculty of Information and Communication Technology; TAT; Universiti Teknologi Malaysia. 5th ICT international student project conference (ICT-ISPC), Nakhon Pathom, Thailand, May 27–28, 2016.Google Scholar
  20. Persson, O., Danell, R., & Schneider, J. W. (2009). How to use Bibexcel for various types of bibliometric analysis. In F. Åström, R. Danell, B. Larsen, & J. W. Schneider (Eds.), Celebrating scholarly communication studies: A Festschrift for Olle Persson at his 60th Birthday (Vol. 5, pp. 9–24). Berlin: International Society for Scientometrics and Informetrics.Google Scholar
  21. Ruiz-Rosero, J., Ramirez-Gonzalez, G., Williams, J. M., Liu, H., Khanna, R., & Pisharody, G. (2017). Internet of things: A scientometric review. Symmetry-Basel, 9(12), 301.CrossRefGoogle Scholar
  22. Savaglio, C., & Fortino, G. (2015). Autonomic and cognitive architectures for the Internet of things. In G. DiFatta, G. Fortino, W. Li, M. Pathan, F. Stahl, & A. Guerrieri (Eds.), Internet and distributed computing systems, IDCS 2015, volume 9258 of Lecture Notes in Computer Science (pp. 39–47). 8th annual international conference on internet and distributed computing systems (IDCS), Windsor, England, September 02–04, 2015.Google Scholar
  23. Small, H. (1997). Update on science mapping: Creating large document spaces. Scientometrics, 38(2), 275–293.CrossRefGoogle Scholar
  24. van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Departamento de TelemáticaUniversidad del CaucaPopayánColombia
  2. 2.Departamento de Ingeniería ElectrónicaUniversidad de NariñoPastoColombia

Personalised recommendations