Advertisement

Scientometrics

, Volume 119, Issue 2, pp 721–747 | Cite as

Spatial spillovers and value chain spillovers: evaluating regional R&D efficiency and its spillover effects in China

  • Xionghe Qin
  • Debin DuEmail author
  • Mei-Po Kwan
Article
  • 155 Downloads

Abstract

Research and development (R&D) efficiency assessment is an effective way for policymakers to develop strategies to increase the beneficial impacts of R&D. This study measures regional R&D efficiency from a multi-stage R&D perspective. It examines the spatial spillover effects and value chain spillover effects of R&D using panel data from 2009 to 2016 for 30 provinces in China. By estimating a spatial Durbin model, we find evidence of strong spatial dependence in R&D efficiency in China. With respect to R&D value chain effects, we find that R&D value chain spillovers took place intra-regionally but not inter-regionally. This finding indicates that in a knowledge flow context, there are two-way R&D value chain spillovers in which the forward spillover effects are stronger than the backward spillover effects. This finding adds important new knowledge to research on knowledge spillovers: distinguishing between value chain spillovers and spatial spillovers opens new avenues for future empirical inquiries.

Keywords

R&D efficiency Spatial spillover effects R&D value chain spillover Network DEA Spatial Durbin model China 

Notes

Acknowledgements

Funding was provided by National Natural Science Foundation of China (Grant No. 41471108) and Peak Discipline Construction Project of Education at East China Normal University.

References

  1. Abreu, M., Grinevich, V., Kitson, M., & Savona, M. (2008). Absorptive capacity and regional patterns of innovation. London: Department for Innovation, Universities & Skills (DIUS).Google Scholar
  2. Aghion, P., Blundell, R., Griffith, R., Howitt, P., & Prantl, S. (2009). The effects of entry on incumbent innovation and productivity. The Review of Economics and Statistics, 91(1), 20–32.CrossRefGoogle Scholar
  3. Aigner, D., Lovell, C. K., & Schmidt, P. (1977). Formulation and estimation of stochastic frontier production function models. Journal of Econometrics, 6(1), 21–37.MathSciNetCrossRefzbMATHGoogle Scholar
  4. Aldieri, L., & Cincera, M. (2009). Geographic and technological R&D spillovers within the triad: Micro evidence from US patents. The Journal of Technology Transfer, 34(2), 196–211.CrossRefGoogle Scholar
  5. Angang, H. (2015). Embracing China‘s new normal. Foreign Affairs, 94(3), 8.Google Scholar
  6. Anselin, L. (2013). Spatial econometrics: Methods and models. Berin: Springer.Google Scholar
  7. Anselin, L., Varga, A., & Acs, Z. (1997). Local geographic spillovers between university research and high technology innovations. Journal of Urban Economics, 42(3), 422–448.CrossRefGoogle Scholar
  8. Audretsch, D. B., & Feldman, M. P. (1996). R&D spillovers and the geography of innovation and production. The American Economic Review, 86(3), 630–640.Google Scholar
  9. Bai, X., Yan, W., & Chiu, Y. (2015). Performance evaluation of China’s Hi-tech zones in the post financial crisis era—Analysis based on the dynamic network SBM model. China Economic Review, 34, 122–134.CrossRefGoogle Scholar
  10. Bathelt, H., Malmberg, A., & Maskell, P. (2004). Clusters and knowledge: Local buzz, global pipelines and the process of knowledge creation. Progress in Human Geography, 28(1), 31–56.CrossRefGoogle Scholar
  11. Boeing, P., Mueller, E., & Sandner, P. (2016). China‘s R&D explosion—Analyzing productivity effects across ownership types and over time. Research Policy, 45(1), 159–176.CrossRefGoogle Scholar
  12. Bottazzi, L., & Peri, G. (2003). Innovation and spillovers in regions: Evidence from European patent data. European Economic Review, 47(4), 687–710.CrossRefGoogle Scholar
  13. Chang, Y., Zhang, N., Danao, D., & Zhang, N. (2013). Environmental efficiency analysis of transportation system in China: A non-radial DEA approach. Energy Policy, 58, 277–283.CrossRefGoogle Scholar
  14. Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444.MathSciNetCrossRefzbMATHGoogle Scholar
  15. Chen, C., Hu, J., & Yang, C. (2011). An international comparison of R&D efficiency of multiple innovative outputs: The role of the national innovation system. Innovation, 13(3), 341–360.CrossRefGoogle Scholar
  16. Ciżkowicz, P., Ciżkowicz-Pękała, M., Pękała, P., & Rzońca, A. (2016). The effects of special economic zones on employment and investment: A spatial panel modeling perspective. Journal of Economic Geography, 17(3), 571–605.Google Scholar
  17. Clermont, M. (2016). Effectiveness and efficiency of research in Germany over time: an analysis of German business schools between 2001 and 2009. Scientometrics, 108(3), 1347–1381.CrossRefGoogle Scholar
  18. Corinne, A.-B. (2012). Spatial econometrics of innovation: Recent contributions and research perspectives. Spatial Economic Analysis, 7(4), 403–419.CrossRefGoogle Scholar
  19. Cozzarin, B. P. (2006). Performance measures for the socio-economic impact of government spending on R&D. Scientometrics, 68(1), 41–71.CrossRefGoogle Scholar
  20. Cullmann, A., Schmidt-Ehmcke, J., & Zloczysti, P. (2011). R&D efficiency and barriers to entry: A two stage semi-parametric DEA approach. Oxford Economic Papers, 64(1), 176–196.CrossRefGoogle Scholar
  21. De Noni, I., Ganzaroli, A., & Orsi, L. (2017). The impact of intra-and inter-regional knowledge collaboration and technological variety on the knowledge productivity of European regions. Technological Forecasting Social Change, 117, 108–118.CrossRefGoogle Scholar
  22. De Smith, M. J., Goodchild, M. F., & Longley, P. (2007). Geospatial analysis: A comprehensive guide to principles, techniques and software tools. Winchelsea: Troubador Publishing Ltd.Google Scholar
  23. Debarsy, N., Ertur, C., & Lesage, J. P. (2012). Interpreting dynamic space–time panel data models. Statistical Methodology, 9(1–2), 158–171.MathSciNetCrossRefzbMATHGoogle Scholar
  24. Department of Science & Technology of National Bureau of Statistics. (2017). Statistical Yearbook of China Science and Technology. Beijing: China Statistics Press.Google Scholar
  25. Dutta, S., Lanvin, B., & Wunsch-Vincent, S. (2015). The global innovation index 2015. Effective Innovation Policies for Development, Geneva: World Intellectual Property Organization.Google Scholar
  26. Dvir, R., & Pasher, E. (2004). Innovation engines for knowledge cities: An innovation ecology perspective. Journal of Knowledge Management, 8(5), 16–27.CrossRefGoogle Scholar
  27. Elhorst, J. P. (2010). Applied spatial econometrics: Raising the bar. Spatial Economic Analysis, 5(1), 9–28.CrossRefGoogle Scholar
  28. Elhorst, J. P., Fischer, M. M., & Getis, A. (2010). Handbook of applied spatial analysis. Berlin: Springer.Google Scholar
  29. Engelbrecht, H.-J. (2002). Human capital and international knowledge spillovers in TFP growth of a sample of developing countries: An exploration of alternative approaches. Applied Economics, 34(7), 831–841.CrossRefGoogle Scholar
  30. Erfanian, E., & Ferreira Neto, A. (2017). Scientific output: Labor or capital intensive? An analysis for selected countries. Scientometrics, 112(1), 461–482.CrossRefGoogle Scholar
  31. Fan, H. (2007). A hypothesis on effective demand size, R&D expenditure and national innovation capacity. Economic Research Journal, 3, 33–44.Google Scholar
  32. Fang, C., Guan, X., Lu, S., Zhou, M., & Deng, Y. (2013). Input–output efficiency of urban agglomerations in China: An application of data envelopment analysis (DEA). Urban Studies, 50(13), 2766–2790.CrossRefGoogle Scholar
  33. Färe, R., Grosskopf, S., & Whittaker, G. (2007). Network dea. In J. Zhu & W. D. Cook (Eds.), Modeling data irregularities and structural complexities in data envelopment analysis (pp. 209–240). Berlin: Springer.CrossRefGoogle Scholar
  34. Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society, 120, 253–281.CrossRefGoogle Scholar
  35. Fitjar, R. D., & Rodríguez-Pose, A. (2013). Firm collaboration and modes of innovation in Norway. Research Policy, 42(1), 128–138.CrossRefGoogle Scholar
  36. Fritsch, M., & Franke, G. (2004). Innovation, regional knowledge spillovers and R&D cooperation. Research Policy, 33(2), 245–255.CrossRefGoogle Scholar
  37. Fritsch, M., & Slavtchev, V. (2011). Determinants of the efficiency of regional innovation systems. Regional Studies, 45(7), 905–918.CrossRefGoogle Scholar
  38. Ganotakis, P., & Love, J. H. (2012). The innovation value chain in new technology-based firms: Evidence from the UK. Journal of Product Innovation Management, 29(5), 839–860.CrossRefGoogle Scholar
  39. George, G., Zahra, S. A., & Wood, D. R. (2002). The effects of business-university alliances on innovative output and financial performance: A study of publicly traded biotechnology companies. Journal of Business Venturing, 17(6), 577–609.CrossRefGoogle Scholar
  40. Griliches, Z. (1979). Issues in assessing the contribution of research and development to productivity growth. The Bell Journal of Economics, 10(1), 92–116.CrossRefGoogle Scholar
  41. Griliches, Z. (1998). Patent statistics as economic indicators: A survey. Chicago: University of Chicago Press.Google Scholar
  42. Guan, J., & Chen, K. (2010). Modeling macro-R&D production frontier performance: An application to Chinese province-level R&D. Scientometrics, 82(1), 165–173.CrossRefGoogle Scholar
  43. Guellec, D., & De La Potterie, B. V. (2002). R&D and productivity growth. OECD Economic Studies, 2001(2), 103–126.CrossRefGoogle Scholar
  44. Hansen, M. T., & Birkinshaw, J. (2007). The innovation value chain. Harvard Business Review, 85(6), 121.Google Scholar
  45. Hershberg, E., Nabeshima, K., & Yusuf, S. (2007). Opening the Ivory Tower to business: University-industry linkages and the development of knowledge-intensive clusters in Asian Cities. World Development, 35(6), 931–940.CrossRefGoogle Scholar
  46. Hewitt-Dundas, N., & Roper, S. (2010). Output additionality of public support for innovation: Evidence for Irish manufacturing plants. European Planning Studies, 18(1), 107–122.CrossRefGoogle Scholar
  47. Jaffe, A. B., Trajtenberg, M., & Henderson, R. (1993). Geographic localization of knowledge spillovers as evidenced by patent citations. The Quarterly Journal of Economics, 108(3), 577–598.CrossRefGoogle Scholar
  48. Klenow, P. J., & Rodriguez-Clare, A. (1997). The neoclassical revival in growth economics: Has it gone too far? Nber Macroeconomics Annual, 12, 73–103.CrossRefGoogle Scholar
  49. Leibenstein, H. (1966). Allocative efficiency versus X-efficiency. The American Economic Review, 56(3), 392–415.Google Scholar
  50. LeSage, J. P., & Pace, R. K. (2009). Introduction to spatial econometrics. New York: CRC Press.CrossRefzbMATHGoogle Scholar
  51. Marrocu, E., Paci, R., & Usai, S. (2013). Proximity, networking and knowledge production in Europe: What lessons for innovation policy? Technological Forecasting Social Change, 80(8), 1484–1498.CrossRefGoogle Scholar
  52. Maurseth, P. B., & Verspagen, B. (2002). Knowledge spillovers in Europe: A patent citations analysis. Scandinavian Journal of Economics, 104(4), 531–545.CrossRefGoogle Scholar
  53. Moran, P. A. (1948). The interpretation of statistical maps. Journal of the Royal Statistical Society: Series B (Methodological), 10(2), 243–251.MathSciNetzbMATHGoogle Scholar
  54. Moreno, R., Paci, R., & Usai, S. (2005). Spatial spillovers and innovation activity in European regions. Environment and Planning A, 37(10), 1793–1812.CrossRefGoogle Scholar
  55. Motohashi, K. (2005). University–industry collaborations in Japan: The role of new technology-based firms in transforming the National Innovation System. Research Policy, 34(5), 583–594.CrossRefGoogle Scholar
  56. Ouyang, P., & Fu, S. (2012). Economic growth, local industrial development and inter-regional spillovers from foreign direct investment: Evidence from China. China Economic Review, 23(2), 445–460.CrossRefGoogle Scholar
  57. Paci, R., & Usai, S. (1999). Externalities, knowledge spillovers and the spatial distribution of innovation. GeoJournal, 49(4), 381–390.CrossRefGoogle Scholar
  58. Parent, O., & LeSage, J. P. (2008). Using the variance structure of the conditional autoregressive spatial specification to model knowledge spillovers. Journal of Applied Econometrics, 23(2), 235–256.MathSciNetCrossRefGoogle Scholar
  59. Pijnenburg, K., & Kholodilin, K. A. (2014). Do regions with entrepreneurial neighbours perform better? A spatial econometric approach for German regions. Regional Studies, 48(5), 866–882.CrossRefGoogle Scholar
  60. Premachandra, I., Zhu, J., Watson, J., & Galagedera, D. U. (2012). Best-performing US mutual fund families from 1993 to 2008: Evidence from a novel two-stage DEA model for efficiency decomposition. Journal of Banking Finance, 36(12), 3302–3317.CrossRefGoogle Scholar
  61. Qiu, J. (2014). China goes back to basics on research funding: Core science gets budget boost in a bid to change research culture and increase innovation. Nature, 507(7491), 148–150.CrossRefGoogle Scholar
  62. Rodríguez-Pose, A. (2001). Is R&D investment in lagging areas of Europe worthwhile? Theory and empirical evidence. Papers in Regional Science, 80(3), 275–295.CrossRefGoogle Scholar
  63. Roper, S., Du, J., & Love, J. H. (2008). Modelling the innovation value chain. Research Policy, 37(6), 961–977.CrossRefGoogle Scholar
  64. Rothaermel, F. T., & Deeds, D. L. (2006). Alliance type, alliance experience and alliance management capability in high-technology ventures. Journal of Business Venturing, 21(4), 429–460.CrossRefGoogle Scholar
  65. Rousseau, S., & Rousseau, R. (1997). Data envelopment analysis as a tool for constructing scientometric indicators. Scientometrics, 40(1), 45–56.MathSciNetCrossRefGoogle Scholar
  66. Rousseau, S., & Rousseau, R. (1998). The scientific wealth of European nations: Taking effectiveness into account. Scientometrics, 42(1), 75–87.MathSciNetCrossRefGoogle Scholar
  67. Scherngell, T., Borowiecki, M., & Hu, Y. (2014). Effects of knowledge capital on total factor productivity in China: A spatial econometric perspective. China Economic Review, 29, 82–94.CrossRefGoogle Scholar
  68. Segerstrom, P. S. (1991). Innovation, imitation, and economic growth. Journal of Political Economy, 99(4), 807–827.CrossRefGoogle Scholar
  69. Shang, Q., Poon, J. P. H., & Yue, Q. (2012). The role of regional knowledge spillovers on China’s innovation. China Economic Review, 23(4), 1164–1175.CrossRefGoogle Scholar
  70. Sharma, S., & Thomas, V. (2008). Inter-country R&D efficiency analysis: An application of data envelopment analysis. Scientometrics, 76(3), 483–501.CrossRefGoogle Scholar
  71. Teitel, S. (1994). Patents, R&D expenditures, country size, and per-capita income: An international comparison. Scientometrics, 29(1), 137–159.CrossRefGoogle Scholar
  72. Tidd, J., Bessant, J., & Pavitt, K. (2005). Managing innovation integrating technological, market and organizational change. Hoboken: Wiley.Google Scholar
  73. Tijssen, R. J. W., Yegros-Yegros, A., & Winnink, J. J. (2016). University–industry R&D linkage metrics: Validity and applicability in world university rankings. Scientometrics, 109(2), 677–696.CrossRefGoogle Scholar
  74. Tobler, W. R. (1979). Cellular geography. In S. Gale & G. Olsson (Eds.), Philosophy in geography (pp. 379–386). Berlin: Springer.CrossRefGoogle Scholar
  75. Tone, K., & Tsutsui, M. (2009). Network DEA: A slacks-based measure approach. European Journal of Operational Research, 197(1), 243–252.CrossRefzbMATHGoogle Scholar
  76. Wang, E. C. (2007). R&D efficiency and economic performance: A cross-country analysis using the stochastic frontier approach. Journal of Policy Modeling, 29(2), 345–360.CrossRefGoogle Scholar
  77. Werner, B. M., & Souder, W. E. (1997). Measuring R&D performance—State of the art. Research Technology Management, 40(2), 34–42.CrossRefGoogle Scholar
  78. Wolszczak-Derlacz, J., & Parteka, A. (2011). Efficiency of European public higher education institutions: A two-stage multicountry approach. Scientometrics, 89(3), 887–917.CrossRefGoogle Scholar
  79. Yang, T. C., Noah, A. J., & Shoff, C. (2015). Exploring geographic variation in US mortality rates using a spatial Durbin approach. Population Space & Place, 21(1), 18–37.CrossRefGoogle Scholar
  80. Yeung, H. W.-C., Liu, W., & Dicken, P. (2006). Transnational corporations and network effects of a local manufacturing cluster in mobile telecommunications equipment in China. World Development, 34(3), 520–540.CrossRefGoogle Scholar
  81. Yu, M.-M. (2010). Assessment of airport performance using the SBM-NDEA model. Omega, 38(6), 440–452.CrossRefGoogle Scholar
  82. Zabala-Iturriagagoitia, J. M., Voigt, P., Gutiérrez-Gracia, A., & Jiménez-Sáez, F. (2007). Regional innovation systems: How to assess performance. Regional Studies, 41(5), 661–672.CrossRefGoogle Scholar
  83. Zhang, A., Zhang, Y., & Zhao, R. (2003). A study of the R&D efficiency and productivity of Chinese firms. Journal of Comparative Economics, 31(3), 444–464.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.National Institute of Educational Policy Research, Faculty of EducationEast China Normal UniversityShanghaiChina
  2. 2.School of Urban and Regional ScienceEast China Normal UniversityShanghaiChina
  3. 3.Department of Geography and Geographic Information ScienceUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  4. 4.Department of Human Geography and Spatial PlanningUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations