, Volume 116, Issue 3, pp 1641–1674 | Cite as

Exploratory mapping of theoretical landscapes through word use in abstracts

  • Pablo Contreras KallensEmail author
  • Rick Dale


We present a case study of how scientometric tools can reveal the structure of scientific theory in a discipline. Specifically, we analyze the patterns of word use in the discipline of cognitive science using latent semantic analysis, a well-known semantic model, in the abstracts of over a thousand academic papers relevant to these theories. Our results show that it is possible to link these theories with specific statistical distributions of words in the abstracts of papers that espouse these theories. We show that theories have different patterns of word use, and that the similarity relationships with each other are intuitive and informative. Moreover, we show that it is possible to predict fairly accurately the theory of a paper by constructing a model of the theories based on their distribution of word use. These results may open new avenues for the application of scientometric tools on theoretical divides.


Latent semantic analysis Cognitive science Text analysis Theoretical issues 



We want to thank professors Paul Smaldino and Jeff Yoshimi for their feedback on this paper. Thanks to Martin Irani for his help with coding and feedback on the preliminary results.


  1. Adams, F., & Aizawa, K. (2010). Defending the bounds of cognition. In R. Menary (Ed.), The extended mind (pp. 67–80). Cambridge, MA: The MIT Press.CrossRefGoogle Scholar
  2. Alhazmi, F., Beaton, D., & Abdi, H. (2017). The latent semantic space and corresponding brain regions of the functional neuroimaging literature. bioRxiv. Scholar
  3. Almeida e Costa, F. (Ed.). (2005). Embodied and situated cognition [Special Issue]. Artificial Life,  11(2).Google Scholar
  4. Anderson, M. L. (2003). Embodied cognition: A field guide. Artificial Intelligence, 149(1), 91–130.CrossRefGoogle Scholar
  5. Barsalou, L. W. (1999). Perceptions of perceptual symbols. Behavioral and Brain Sciences, 22(4), 637–660.CrossRefGoogle Scholar
  6. Bechtel, W., & Abrahamsen, A. (2006). Phenomena and mechanisms: Putting the symbolic, connectionist, and dynamical systems debate in broader perspective. Contemporary debates in cognitive science. Oxford, UK: Basil Blackwell.Google Scholar
  7. Bechtel, W., & Graham, G. (1998). A companion to cognitive science. Oxford, UK: Blackwell.Google Scholar
  8. Beer, R. D. (1995). A dynamical systems perspective on agent-environment interaction. Artificial Intelligence, 72(1–2), 173–215.CrossRefGoogle Scholar
  9. Bergmann, T., & Dale, R. (2016). A scientometric analysis of evolang: Intersections and authorships. In S. Roberts, C. Cuskley, L. McCrohon, L. Barceló-Coblijn, O. Fehér, & T. Verhoef (Eds.), The evolution of language: Proceedings of the 11th international conference (EVOLANGX11). Retrieved 22 June 2018.
  10. Berry, M. W., Dumais, S. T., & O’Brien, G. W. (1995). Using linear algebra for intelligent information retrieval. SIAM Review, 37(4), 573–595.MathSciNetCrossRefzbMATHGoogle Scholar
  11. Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with Python: Analyzing text with the natural language toolkit. Sebastopol, CA: O’Reilly Media Inc.zbMATHGoogle Scholar
  12. Blatt, E. (2009). Differentiating, describing, and visualizing scientific space: A novel approach to the analysis of published scientific abstracts. Scientometrics, 80(2), 385–406.CrossRefGoogle Scholar
  13. Calvo, P., & Gomila, T. (2008). Handbook of cognitive science: An embodied approach. New York, NY: Elsevier.Google Scholar
  14. Chemero, A. (2011). Radical embodied cognitive science. Cambridge, MA: The MIT Press.Google Scholar
  15. Chemero, A., & Silberstein, M. (2008). After the philosophy of mind: Replacing scholasticism with science. Philosophy of Science, 75(1), 1–27.CrossRefGoogle Scholar
  16. Clark, A. (1998). Being there: Putting brain, body, and world together again. Cambridge, MA: The MIT Press.Google Scholar
  17. Contreras Kallens, P. A. (2016). La máquina del fantasma: unidad de análisis en la ciencia cognitiva (Unpublished master’s thesis). Universidad de Chile, Av. Capitán Ignacio Carrera Pinto 1025, Nuñoa, Santiago, Chile.Google Scholar
  18. Cowley, S. J. (2011). Distributed language (Vol. 34). Amsterdam, Netherlands: John Benjamins Publishing.Google Scholar
  19. Dale, R. (2008). The possibility of a pluralist cognitive science. Journal of Experimental and Theoretical Artificial Intelligence, 20(3), 155–179.CrossRefGoogle Scholar
  20. Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6), 391.CrossRefGoogle Scholar
  21. de Oliveira, G. S., & Chemero, A. (2015). Against smallism and localism. Studies in Logic, Grammar and Rhetoric, 41(1), 9–23.CrossRefGoogle Scholar
  22. Di Paolo, E. A. (2005). Autopoiesis, adaptivity, teleology, agency. Phenomenology and the Cognitive Sciences, 4(4), 429–452.CrossRefGoogle Scholar
  23. Dumais, S. T. (1991). Improving the retrieval of information from external sources. Behavior Research Methods, Instruments, & Computers, 23(2), 229–236.CrossRefGoogle Scholar
  24. Edelman, S. (2008). On the nature of minds, or: Truth and consequences. Journal of Experimental & Theoretical Artificial Intelligence, 20(3), 181–196.MathSciNetCrossRefGoogle Scholar
  25. Evangelopoulos, N., Zhang, X., & Prybutok, V. R. (2012). Latent semantic analysis: Five methodological recommendations. European Journal of Information Systems, 21(1), 70–86.CrossRefGoogle Scholar
  26. Evangelopoulos, N. E. (2013). Latent semantic analysis. Wiley Interdisciplinary Reviews: Cognitive Science, 4(6), 683–692.Google Scholar
  27. Feldman, J. A., & Ballard, D. H. (1982). Connectionist models and their properties. Cognitive Science, 6(3), 205–254.CrossRefGoogle Scholar
  28. Fellows, I. (2014). wordcloud: Word clouds. Retrieved from (R package version 2.5).
  29. Fodor, J. A. (1975). The language of thought. Cambridge, MA: Harvard University Press.Google Scholar
  30. Garfield, E., et al. (1970). Citation indexing for studying science. Nature, 227(5259), 669–671.CrossRefGoogle Scholar
  31. Gentner, D. (2010). Psychology in cognitive science: 1978–2038. Topics in Cognitive Science, 2(3), 328–344.CrossRefGoogle Scholar
  32. Gibbs, R. W, Jr. (2005). Embodiment and Cognitive Science. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  33. Gibson, E. J., & Pick, A. D. (2000). An ecological approach to perceptual learning and development. Oxford, UK: Oxford University Press.Google Scholar
  34. Gibson, J. J. (1979). The ecological approach to visual perception: Classic edition (2014). Hove, UK: Psychology Press.Google Scholar
  35. Gomila, T., & Calvo, P. (2008). Directions for an embodied cognitive science: Toward an integrated approach. In P. Calvo & T. Gomila (Eds.), Handbook of cognitive science: An embodied approach (pp. 1–25). San Diego, CA: Elsevier.Google Scholar
  36. Griffiths, T. L., Chater, N., Kemp, C., Perfors, A., & Tenenbaum, J. B. (2010). Probabilistic models of cognition: Exploring representations and inductive biases. Trends in Cognitive Sciences, 14(8), 357–364.CrossRefGoogle Scholar
  37. Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National academy of Sciences, 101(suppl 1), 5228–5235.CrossRefGoogle Scholar
  38. Haugeland, J. (1978). The nature and plausibility of cognitivism. Behavioral and Brain Sciences, 1(2), 215–226.CrossRefGoogle Scholar
  39. Haugeland, J. (1981). Semantic engines: An introduction to mind design. In J. Haugeland (Ed.), Mind design (pp. 34–50). Cambridge, MA: MIT Press.Google Scholar
  40. Hohwy, J. (2013). The predictive mind. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
  41. Hollan, J., Hutchins, E., & Kirsh, D. (2000). Distributed cognition: Toward a new foundation for human–computer interaction research. ACM Transactions on Computer–Human Interaction (TOCHI), 7(2), 174–196.CrossRefGoogle Scholar
  42. Hu, X., Cai, Z., Wiemer-Hastings, P., Graesser, A. C., & McNamara, D. S. (2007). Strengths, limitations, and extensions of LSA. In T. K. Landauer, D. S. McNamara, S. Dennis, & W. Kintsch (Eds.), Handbook of latent semantic analysis (pp. 401–426). New York, NY: Routledge.Google Scholar
  43. Hutchins, E. (1995). Cognition in the wild. Cambridge, MA: The MIT Press.Google Scholar
  44. Jorge-Botana, G., Olmos, R., & Luzón, J. M. (2018). Word maturity indices with latent semantic analysis: why, when, and where is Procrustes rotation applied? WIREs Cogn Sci, 9, e1457.CrossRefGoogle Scholar
  45. Kireyev, K., & Landauer, T. K. (2011). Word maturity: Computational modeling of word knowledge. In Proceedings of the 49th annual meeting of the association for computational linguistics: Human language technologies - Volume 1 (pp. 299–308). Stroudsburg, PA: Association for Computational Linguistics.Google Scholar
  46. Kugler, P. N., & Turvey, M. T. (2015). Information, natural law, and the self-assembly of rhythmic movement. Abingdon, UK: Routledge.Google Scholar
  47. Kuhn, T. S. (2000a). Commensurability, comparability, communicability. In J. Conant & J. Haugeland (Eds.), The road since Structure: Philosophical essays 1970–1993, with an autobiographical interview (pp. 33–57). Chicago IL: The University of Chicago Press.Google Scholar
  48. Kuhn, T. S. (2000b). What are scientific revolutions? In J. Conant & J. Haugeland (Eds.), The road since Structure: Philosophical essays 1970–1993, with an autobiographical interview (pp. 13–32). Chicago, IL: The University of Chicago Press.Google Scholar
  49. Landauer, T. K., & Dumais, S. T. (1997). A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review, 104(2), 211.CrossRefGoogle Scholar
  50. Landauer, T. K., Foltz, P. W., & Laham, D. (1998). An introduction to latent semantic analysis. Discourse Processes, 25(2–3), 259–284.CrossRefGoogle Scholar
  51. Langfelder, P., Zhang, B., & Horvath, S. (2008). Defining clusters from a hierarchical cluster tree: The dynamic tree cut package for R. Bioinformatics, 24(5), 719–720.CrossRefGoogle Scholar
  52. Leydesdorff, L. (1998). Theories of citation? Scientometrics, 43(1), 5–25.CrossRefGoogle Scholar
  53. Louwerse, M. M. (2011). Symbol interdependency in symbolic and embodied cognition. Topics in Cognitive Science, 3(2), 273–302.CrossRefGoogle Scholar
  54. Martin, D. I., & Berry, M. W. (2007). Mathematical foundations behind latent semantic analysis. In T. K. Landauer, D. S. McNamara, S. Dennis, & W. Kintsch (Eds.), Handbook of latent semantic analysis (pp. 35–56). New York, NY: Routledge.Google Scholar
  55. Marx, W., & Bornmann, L. (2010). How accurately does thomas kuhn’s model of paradigm change describe the transition from the static view of the universe to the big bang theory in cosmology? Scientometrics, 84(2), 441–464.CrossRefGoogle Scholar
  56. Marx, W., & Bornmann, L. (2013). The emergence of plate tectonics and the kuhnian model of paradigm shift: A bibliometric case study based on the anna karenina principle. Scientometrics, 94(2), 595–614.CrossRefGoogle Scholar
  57. McCauley, R. N., & Bechtel, W. (2001). Explanatory pluralism and heuristic identity theory. Theory & Psychology, 11(6), 736–760.CrossRefGoogle Scholar
  58. McClelland, J. L., Botvinick, M. M., Noelle, D. C., Plaut, D. C., Rogers, T. T., Seidenberg, M. S., et al. (2010). Letting structure emerge: Connectionist and dynamical systems approaches to cognition. Trends in Cognitive Sciences, 14(8), 348–356.CrossRefGoogle Scholar
  59. Menary, R. (Ed.) (2010a). 4e cognition: Embodied, embedded, enacted, extended [Special Issue]. Phenomenology and the Cognitive Sciences, 9(4), 459–463.Google Scholar
  60. Menary, R. (2010b). Introduction to the special issue on 4e cognition. Phenomenology and the Cognitive Sciences, 9(4), 459–463.CrossRefGoogle Scholar
  61. Michaels, C. F., & Carello, C. (1981). Direct perception. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  62. Moravcsik, M. J., & Murugesan, P. (1979). Citation patterns in scientific revolutions. Scientometrics, 1(2), 161–169.CrossRefGoogle Scholar
  63. Newell, A. (1973). You can’t play 20 questions with nature and win: Projective comments on the papers of this symposium. In Visual Information Processing (pp. 283–308).Google Scholar
  64. Oaksford, M., & Chater, N. (2009). Précis of bayesian rationality: The probabilistic approach to human reasoning. Behavioral and Brain Sciences, 32(1), 69–84.CrossRefGoogle Scholar
  65. Olmos, R., Jorge-Botana, G., León, J. A., & Escudero, I. (2014). Transforming selected concepts into dimensions in latent semantic analysis. Discourse Processes, 51(5–6), 494–510.CrossRefGoogle Scholar
  66. Olmos, R., Jorge-Botana, G., Luzón, J. M., Martín-Cordero, J. I., & León, J. A. (2016). Transforming lsa space dimensions into a rubric for an automatic assessment and feedback system. Information Processing & Management, 52(3), 359–373.CrossRefGoogle Scholar
  67. Paxton, A. E. (2015). Coordination: Theoretical, methodological, and experimental perspectives. Ph.D. thesis, University of California, Merced.Google Scholar
  68. Priva, U. C., & Austerweil, J. L. (2015). Analyzing the history of cognition using topic models. Cognition, 135, 4–9.CrossRefGoogle Scholar
  69. R Core Team. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
  70. Richardson, M. J., Shockley, K., Fajen, B. R., Riley, M. A., & Turvey, M. T. (2008). Ecological psychology: Six principles for an embodied–embedded approach to behavior. In P. Calvo & T. Gomila (Eds.), Handbook of cognitive science: An embodied approach (pp. 159–187). San Diego, CA: Elsevier.CrossRefGoogle Scholar
  71. Robbins, P., Aydede, M., et al. (2009). The Cambridge handbook of situated cognition. Cambridge, UK: Cambridge University Press.Google Scholar
  72. Rowlands, M. (2010). The new science of the mind: From extended mind to embodied phenomenology. Cambridge, MA: The MIT Press.CrossRefGoogle Scholar
  73. Rumelhart, D. E., McClelland, J. L., Group, P. R., et al. (1987). Parallel distributed processing (Vol. 1). Cambridge, MA: The MIT Press.Google Scholar
  74. Salton, G., Wong, A., & Yang, C.-S. (1975). A vector space model for automatic indexing. Communications of the ACM, 18(11), 613–620.CrossRefzbMATHGoogle Scholar
  75. Sankey, H. (1997). Incommensurability: The current state of play. Theoria: An International Journal for Theory, History and Foundations of Science, 12(3), 425–445.Google Scholar
  76. Shapiro, L. (2010). Embodied cognition. Abingdon, UK: Routledge.Google Scholar
  77. Shapiro, L. (2014). The Routledge handbook of embodied cognition. Abingdon, UK: Routledge.Google Scholar
  78. Sidorova, A., Evangelopoulos, N., Valacich, J. S., & Ramakrishnan, T. (2008). Uncovering the intellectual core of the information systems discipline. MIS Quarterly, 32(3), 467–482.CrossRefGoogle Scholar
  79. Smolensky, P. (1988). On the proper treatment of connectionism. Behavioral and Brain Sciences, 11(1), 1–23.MathSciNetCrossRefGoogle Scholar
  80. Spivey, M. (2008). The continuity of mind. Oxford, UK: Oxford University Press.Google Scholar
  81. Stepp, N., Chemero, A., & Turvey, M. T. (2011). Philosophy for the rest of cognitive science. Topics in Cognitive Science, 3(2), 425–437.CrossRefGoogle Scholar
  82. Stewart, J., Stewart, J. R., Gapenne, O., & Di Paolo, E. A. (2010). Enaction: Toward a new paradigm for cognitive science. Cambridge, MA: The MIT Press.CrossRefGoogle Scholar
  83. Tenenbaum, J. B., Griffiths, T. L., & Kemp, C. (2006). Theory-based bayesian models of inductive learning and reasoning. Trends in Cognitive Sciences, 10(7), 309–318.CrossRefGoogle Scholar
  84. Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011). How to grow a mind: Statistics, structure, and abstraction. Science, 331(6022), 1279–1285.MathSciNetCrossRefzbMATHGoogle Scholar
  85. Thelen, E., & Smith, L. B. (1996). A dynamic systems approach to the development of cognition and action. Cambridge, MA: The MIT Press.Google Scholar
  86. Van Gelder, T. (1995). What might cognition be, if not computation? The Journal of Philosophy, 92(7), 345–381.CrossRefGoogle Scholar
  87. Varela, F. J., Thompson, E., & Rosch, E. (2017). The embodied mind: Cognitive science and human experience. Cambridge, MA: The MIT Press.Google Scholar
  88. Von Eckardt, B. (1995). What is cognitive science? Cambridge, MA: The MIT Press.Google Scholar
  89. Vygotsky, L. S. (1997). The collected works of LS Vygotsky: Problems of the theory and history of psychology (Vol. 3). Berlin, Germany: Springer.Google Scholar
  90. Wheeler, M. (2014). Revolution, reform, or business as usual? The future prospects for embodied cognition. In L. Shapiro (Ed.), The Routledge handbook of embodied cognition (pp. 374–383). Abingdon, UK: Routledge.Google Scholar
  91. Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9(4), 625–636.CrossRefGoogle Scholar
  92. Wilson, R. A. (2004). Boundaries of the mind: The individual in the fragile sciences-Cognition. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  93. Yoshimi, J. (2012). Active internalism and open dynamical systems. Philosophical Psychology, 25(1), 1–24.CrossRefGoogle Scholar
  94. Ziemke, T. (Ed.). (2002). Situated and embodied cognition [Special Issue]. Cognitive systems research 3(3).Google Scholar
  95. Ziemke, T. (2003). What’s that thing called embodiment. In R. Alterman & D. Kirsh (Eds.), Proceedings of the 25th annual meeting of the cognitive science society (pp. 1305–1310). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  96. Zwaan, R. A. (2014). Embodiment and language comprehension: Reframing the discussion. Trends in Cognitive Sciences, 18(5), 229–234.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of PsychologyCornell UniversityIthacaUSA
  2. 2.Cognitive and Information SciencesUniversity of CaliforniaMercedUSA
  3. 3.Department of CommunicationUniversity of CaliforniaLos AngelesUSA

Personalised recommendations