Advertisement

Scientometrics

, Volume 116, Issue 1, pp 363–383 | Cite as

The evolutions of the rich get richer and the fit get richer phenomena in scholarly networks: the case of the strategic management journal

  • Guillermo Armando Ronda-Pupo
  • Thong Pham
Article

Abstract

Understanding how a scientist develops new scientific collaborations or how their papers receive new citations is a major challenge in scientometrics. The approach being proposed simultaneously examines the growth processes of the co-authorship and citation networks by analyzing the evolutions of the rich get richer and the fit get richer phenomena. In particular, the preferential attachment function and author fitnesses, which govern the two phenomena, are estimated non-parametrically in each network. The approach is applied to the co-authorship and citation networks of the flagship journal of the strategic management scientific community, namely the Strategic Management Journal. The results suggest that the abovementioned phenomena have been consistently governing both temporal networks. The average of the attachment exponents in the co-authorship network is 0.30 while it is 0.29 in the citation network. This suggests that the rich get richer phenomenon has been weak in both networks. The right tails of the distributions of author fitness in both networks are heavy, which imply that the intrinsic scientific quality of each author has been playing a crucial role in getting new citations and new co-authorships. Since the total competitiveness in each temporal network is founded to be rising with time, it is getting harder to receive a new citation or to develop a new collaboration. Analyzing the average competency, it was found that on average, while the veterans tend to be more competent at developing new collaborations, the newcomers are likely better at acquiring new citations. Furthermore, the author fitness in both networks has been consistent with the history of the strategic management scientific community. This suggests that coupling node fitnesses throughout different networks might be a promising new direction in analyzing simultaneously multiple networks.

Keywords

Author fitness Citation network Co-authorship network Preferential attachment Power-law Scale free network First-mover advantage 

JEL Classification

M1 

Notes

Acknowledgements

The authors thank the two reviewers for interesting suggestions on a previous version of the manuscript. We also express our gratitude to Professors Luis Ángel Guerras-Martin and Anoop Madok for interesting comments on the links between fittest authors with their lines of research.

Funding

This study was financed by FONDECYT, Chile, grant number 1180200 to Professor Guillermo Armando Ronda-Pupo.

References

  1. Abbasi, A., Hossain, L., & Leydesdorff, L. (2012). Betweenness centrality as a driver of preferential attachment in the evolution of research collaboration networks. Journal of Informetrics, 6(3), 403–412.  https://doi.org/10.1016/j.joi.2012.01.002.CrossRefGoogle Scholar
  2. Azar, O. H., & Brock, D. M. (2008). A citation-based ranking of strategic management journals. Journal of Economics & Management Strategy, 17(3), 781–802.  https://doi.org/10.1111/j.1530-9134.2008.00195.x.CrossRefGoogle Scholar
  3. Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.  https://doi.org/10.1126/science.286.5439.509.MathSciNetCrossRefzbMATHGoogle Scholar
  4. Barabási, A. L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A: Statistical Mechanics and its Applications, 311(3–4), 590–614.  https://doi.org/10.1016/s0378-4371(02)00736-7.MathSciNetCrossRefzbMATHGoogle Scholar
  5. Barney, J. B. (2016). Resource-based theories of competitive advantage: A ten-year retrospective on the resource-based view. Journal of Management, 27(6), 643–650.  https://doi.org/10.1177/014920630102700602.CrossRefGoogle Scholar
  6. Batagelj, V., Ferligoj, A., & Squazzoni, F. (2017). The emergence of a field: a network analysis of research on peer review. Scientometrics, 113(1), 503–532.  https://doi.org/10.1007/s11192-017-2522-8.CrossRefGoogle Scholar
  7. Bettencourt, L. M. A., Lobo, J. M., Helbing, D., Kuhnert, C., & West, G. B. (2007). Growth, innovation, scaling, and the pace of life in cities. Proceedings of the National Academy of Sciences of the United States of America, 104(17), 7301–7306.  https://doi.org/10.1073/pnas.0610172104.CrossRefGoogle Scholar
  8. Bianconi, G., & Barabási, A. L. (2001). Competition and multiscaling in evolving networks. Europhysics Letters (EPL), 54(4), 436–442.  https://doi.org/10.1209/epl/i2001-00260-6.CrossRefGoogle Scholar
  9. Biscaro, C., & Giupponi, C. (2014). Co-authorship and bibliographic coupling network effects on citations. PLoS ONE, 9(6), e99502.  https://doi.org/10.1371/journal.pone.0099502.CrossRefGoogle Scholar
  10. Borgatti, S., Everett, M., & Freeman, L. C. (2002). Ucinet 6 for Windows (Version 6.165): Analytic Technologies.Google Scholar
  11. Caldarelli, G. (2007). Scale-free networks. London: Oxford University Press.CrossRefzbMATHGoogle Scholar
  12. Caldarelli, G., Capocci, A., De Los Rios, P., & Munoz, M. A. (2002). Scale-free networks from varying vertex intrinsic fitness. Physical Review Letters, 89(25), 258702.  https://doi.org/10.1103/PhysRevLett.89.258702.CrossRefGoogle Scholar
  13. de Solla-Price, D. J. (1965). Networks of scientific papers. Science, 14(3683), 510–515.  https://doi.org/10.1126/science.149.3683.510.CrossRefGoogle Scholar
  14. de Solla-Price, D. J. (1976). A general theory of bibliometric and other cumulative advantage processes. Journal of the American Society for Information Science, 27(5), 292–306.  https://doi.org/10.1002/asi.4630270505.CrossRefGoogle Scholar
  15. Egghe, L. (2005). The power of power laws and an interpretation of lotkaian informetric systems as self-similar fractals. Journal of the American Society for Information Science and Technology, 56(7), 669–675.  https://doi.org/10.1002/asi.20158.CrossRefGoogle Scholar
  16. Egghe, L. (2013). Theory and practise of the g-index. Scientometrics, 69(1), 131–152.  https://doi.org/10.1007/s11192-006-0144-7.CrossRefGoogle Scholar
  17. Egghe, L., & Rousseau, R. (1986). A characterization of distributions which satisfy Price’s law and consequences for the laws of Zipf and Mandelbrot. Journal of Information Science, 12(4), 193–197.  https://doi.org/10.1177/016555158601200406.CrossRefGoogle Scholar
  18. Eisenhardt, K. M., & Martin, J. A. (2000). Dynamic capabilities: What are they? Strategic Management Journal, 21, 1105–1121.  https://doi.org/10.1002/1097-0266(200010/11)21:10/11<1105::AID-SMJ133>3.0.CO;2-E.CrossRefGoogle Scholar
  19. Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215–239.  https://doi.org/10.1016/0378-8733(78)90021-7.CrossRefGoogle Scholar
  20. Frynas, J. G., Mellahi, K., & Pigman, G. A. (2006). First mover advantages in international business and firm-specific political resources. Strategic Management Journal, 27(4), 321–345.  https://doi.org/10.1002/smj.519.CrossRefGoogle Scholar
  21. Furrer, O., Thomas, H., & Goussevskaia, A. (2008). The structure and evolution of the strategic management field: A content analysis of 26 years of strategic management research. International Journal of Management Reviews, 10(1), 1–23.  https://doi.org/10.1111/j.1468-2370.2007.00217.x.CrossRefGoogle Scholar
  22. Gibrat, R. (1931). Les inégalités économiques. Paris: Librairie du Recueil Sirey.zbMATHGoogle Scholar
  23. Guerras-Martin, L. Á., & Ronda-Pupo, G. A. (2013). Strategic management journal. In M. Augier & D. J. Teece (Eds.), The Palgrave encyclopedia of strategic management (pp. 1–5). Basingstoke: Palgrave Macmillan.Google Scholar
  24. Gulati, R. (1998). Alliances and networks. Strategic Management Journal, 19, 293–317.  https://doi.org/10.1002/(SICI)1097-0266(199804)19:4<293::AID-SMJ982>3.0.CO;2-M.CrossRefGoogle Scholar
  25. Guns, R., Liu, Y. X., & Mahbuba, D. (2011). Q-measures and betweenness centrality in a collaboration network: A case study of the field of informetrics. Scientometrics, 87(1), 133–147.  https://doi.org/10.1007/s11192-010-0332-3.CrossRefGoogle Scholar
  26. Hambrick, D. C. (1981). Strategic awareness within top management teams. Strategic Management Journal, 2(3), 263–279.  https://doi.org/10.1002/smj.4250020305.CrossRefGoogle Scholar
  27. Henderson, R., & Cockburn, I. (1994). Measuring competence? Exploring firm effects in pharmaceutical research. Strategic Management Journal, 15, 63–84.  https://doi.org/10.1002/smj.4250150906.CrossRefGoogle Scholar
  28. Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences of the United States of America, 102(46), 16569–16572.  https://doi.org/10.1073/pnas.0507655102.CrossRefzbMATHGoogle Scholar
  29. Judge, W. Q., Weber, T., & Muller-Kahle, M. I. (2012). What are the correlates of interdisciplinary research impact? The case of corporate governance research. Academy of Management Learning & Education, 11(1), 82–98.  https://doi.org/10.5465/amle.2010.0191.CrossRefGoogle Scholar
  30. Katz, J. S. (1999). The self-similar science system. Research Policy, 28(5), 501–517.  https://doi.org/10.1016/S0048-7333(99)00010-4.CrossRefGoogle Scholar
  31. Katz, J. S. (2016a). Policies considerations for evidence-based measures of complex innovation systems. Paper presented at the SPRU 50th aniversary conference, University of Sussex, Brighton UK.Google Scholar
  32. Katz, J. S. (2016b). What is a complex innovation system? PLoS ONE, 11(6), e0156150.  https://doi.org/10.1371/journal.pone.0156150.CrossRefGoogle Scholar
  33. Kogut, B. (1988). Joint ventures: Theoretical and empirical perspectives. Strategic Management Journal, 9, 319–332.  https://doi.org/10.1002/smj.4250090403.CrossRefGoogle Scholar
  34. Kong, J. S., Sarshar, N., & Roychowdhury, V. P. (2008). Experience versus talent shapes the structure of the Web. Proceedings of the National Academy of Sciences of the United States of America, 105(37), 13724–13729.  https://doi.org/10.1073/pnas.0805921105.CrossRefGoogle Scholar
  35. Koseoglu, M. A. (2016). Mapping the institutional collaboration network of strategic management research: 1980–2014. Scientometrics, 109(1), 203–226.  https://doi.org/10.1007/s11192-016-1894-5.MathSciNetCrossRefGoogle Scholar
  36. Krapivsky, P. L., & Redner, S. (2001). Organization of growing random networks. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 63(6 Pt 2), 066123.  https://doi.org/10.1103/PhysRevE.63.066123.CrossRefGoogle Scholar
  37. Law, J., & Whittaker, J. (1992). Mapping acidification research: A test of the co-word method. Scientometrics, 23(3), 417–461.CrossRefGoogle Scholar
  38. Leydesdorff, L. (2007). Betweenness centrality as an indicator of the interdisciplinarity of scientific journals. Journal of the American Society for Information Science and Technology, 58(9), 1303–1319.  https://doi.org/10.1002/asi.20614.CrossRefGoogle Scholar
  39. Lotka, A. J. (1926). The frecuency distribution of scientific productivity. Journal of the Washington Academy of Sciences, 16(12), 317–323. doi:http://www.jstor.org/stable/i24527553.
  40. Merton, R. K. (1968). The Matthew effect in science. Science, 159(3810), 56–63.  https://doi.org/10.1126/science.159.3810.56.CrossRefGoogle Scholar
  41. Merton, R. K. (1988). The Matthew effect in science, II: Cumulative advantage and the symbolism of intellectual property. Isis, 79(4), 606–623.  https://doi.org/10.1086/354848.CrossRefGoogle Scholar
  42. Moed, H. F. (2010). CWTS crown indicator measures citation impact of a research group’s publication oeuvre. Journal of Informetrics, 4(3), 436–438.  https://doi.org/10.1016/j.joi.2010.03.009.CrossRefGoogle Scholar
  43. Nag, R., Hambrick, D. C., & Chen, M.-J. (2007). What is strategic management, really? Inductive derivation of a consensus definition of the field. Strategic Management Journal, 28(9), 935–955.  https://doi.org/10.1002/smj.615.CrossRefGoogle Scholar
  44. Naranan, S. (1971). Power law relations in science bibliography—a self-consistent interpretation. Journal of Documentation, 27(2), 83–97.  https://doi.org/10.1108/eb026510.CrossRefGoogle Scholar
  45. Neophytou, J. (2014). How to navigate the world of citation metrics. Retrieved from http://exchanges.wiley.com/blog/2014/05/15/how-to-navigate-the-world-of-citation-metrics/.
  46. Nerur, S. P., Rasheed, A. A., & Natarajan, V. (2008). The intellectual structure of the strategic management field: an author co-citation analysis. Strategic Management Journal, 29(3), 319–336.  https://doi.org/10.1002/smj.659.CrossRefGoogle Scholar
  47. Newman, M. E. J. (2001a). Clustering and preferential attachment in growing networks. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 64(2 Pt 2), 025102.  https://doi.org/10.1103/PhysRevE.64.025102.CrossRefGoogle Scholar
  48. Newman, M. E. J. (2001b). Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 64(1 Pt 2), 016132.  https://doi.org/10.1103/physreve.64.016132.CrossRefGoogle Scholar
  49. Newman, M. E. J. (2001c). The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 404–409.  https://doi.org/10.1073/pnas.021544898.MathSciNetCrossRefzbMATHGoogle Scholar
  50. Newman, M. E. J. (2009). The first-mover advantage in scientific publication. EPL (Europhysics Letters).  https://doi.org/10.1209/0295-5075/86/68001.Google Scholar
  51. Otte, E., & Rousseau, R. (2016). Social network analysis: a powerful strategy, also for the information sciences. Journal of Information Science, 28(6), 441–453.  https://doi.org/10.1177/016555150202800601.CrossRefGoogle Scholar
  52. Pan, R. K., & Fortunato, S. (2014). Author impact factor: Tracking the dynamics of individual scientific impact. Scientific Reports, 4, 4880.  https://doi.org/10.1038/srep04880.CrossRefGoogle Scholar
  53. Persson, O. R., & Danell, J. W. S. (2009). How to use bibexcel for various types of bibliometric analysis. In R. F. Åström, B. Danell, & J. S. Larsen (Eds.), Celebrating scholarly communication studies: A Festschrift for Olle Persson at his 60th birthday (pp. 9–24). Leuven: International Society for Scientometrics and Informetrics.Google Scholar
  54. Peteraf, M. A. (1993). The cornerstones of competitive advantage: A resource-based view. Strategic Management Journal, 14(3), 179–191.  https://doi.org/10.1002/smj.4250140303.CrossRefGoogle Scholar
  55. Pham, T., Sheridan, P., & Shimodaira, H. (2015). PAFit: A statistical method for measuring preferential attachment in temporal complex networks. PLoS ONE, 10(9), e0137796.  https://doi.org/10.1371/journal.pone.0137796.CrossRefGoogle Scholar
  56. Pham, T., Sheridan, P., & Shimodaira, H. (2016). Joint estimation of preferential attachment and node fitness in growing complex networks. Scientific Reports, 6, 32558.  https://doi.org/10.1038/srep32558.CrossRefGoogle Scholar
  57. Pham, T., Sheridan, P., & Shimodaira, H. (2018). PAFit: an R Package for the non-parametric estimation of preferential attachment and node fitness in temporal complex networks. Retrieved from https://arxiv.org/abs/1704.06017.
  58. Porter, M. (1980). Competitive strategy: Techniques for analyzing industries and competitors. New York, NY: Macmillan Publishing Company.Google Scholar
  59. Ramos-Rodríguez, A.-R., & Ruíz-Navarro, J. (2004). Changes in the intellectual structure of strategic management research: A bibliometric study of the Strategic Management Journal, 1980–2000. Strategic Management Journal, 25(10), 981–1004.  https://doi.org/10.1002/smj.397.CrossRefGoogle Scholar
  60. Ring, P. S., & van de Ven, A. H. (1992). Structuring cooperative relationships between organizations. Strategic Management Journal, 13, 483–498.  https://doi.org/10.1002/smj.4250130702.CrossRefGoogle Scholar
  61. Ronda-Pupo, G. A. (2015). Knowledge map of Latin American research on management: Trends and future advancement. Social Science Information, 55(1), 3–27.  https://doi.org/10.1177/0539018415610225.CrossRefGoogle Scholar
  62. Ronda-Pupo, G. A., & Guerras-Martín, L. Á. (2010). Dynamics of the scientific community network within the strategic management field through the Strategic Management Journal 1980–2009: the role of cooperation. Scientometrics, 85(3), 821–848.  https://doi.org/10.1007/s11192-010-0287-4.CrossRefGoogle Scholar
  63. Ronda-Pupo, G. A., & Guerras-Martín, L. Á. (2013). Red de cooperación institucional de investigación en dirección de empresas en España en torno a la revista CEDE: 1998–2010. Cuadernos de Economía y Dirección de la Empresa, 16(1), 1–16.  https://doi.org/10.1016/j.cede.2012.06.003.CrossRefGoogle Scholar
  64. Ronda-Pupo, G. A., & Katz, J. S. (2017). The scaling relationship between citation-based performance and scientific collaboration in natural sciences. Journal of the Association for Information Science and Technology, 68(5), 1257–1265.  https://doi.org/10.1002/asi.23759.CrossRefGoogle Scholar
  65. Rupp, D. E., Thornton, M. A., Rogelberg, S. G., Olien, J. L., & Berka, G. (2014). The characteristics of quality scholarly submissions: Considerations of author team composition and decision making. Journal of Management, 40(6), 1501–1510.  https://doi.org/10.1177/0149206314547387.CrossRefGoogle Scholar
  66. Simon, H. A. (1955). On a Class of Skew Distribution. Biometrika, 42(3–4), 425–440.  https://doi.org/10.2307/2333389.MathSciNetCrossRefzbMATHGoogle Scholar
  67. Strategic Management Society. (2014). SMS awards and honors. Retrieved from https://www.strategicmanagement.net/awards/smj-best-paper.
  68. Tahai, A., & Meyer, M. J. (1999). A revealed preference study of management’s journal direct influences. Strategic Management Journal, 20, 279–296.  https://doi.org/10.1002/(SICI)1097-0266(199903)20:3<279::AID-SMJ33>3.0.CO;2-2.CrossRefGoogle Scholar
  69. Teece, D. J., Pisano, G., & Shuen, A. (1997). Dynamic capabilities and strategic management. Strategic Management Journal, 18(7), 509–533.  https://doi.org/10.1002/(SICI)1097-0266(199708)18:7<509::AID-SMJ882>3.0.CO;2-Z.CrossRefGoogle Scholar
  70. Türker, İ., & Çavuşoğlu, A. (2016). Detailing the co-authorship networks in degree coupling, edge weight and academic age perspective. Chaos, Solitons & Fractals, 91, 386–392.  https://doi.org/10.1016/j.chaos.2016.06.023.CrossRefGoogle Scholar
  71. van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538.  https://doi.org/10.1007/s11192-009-0146-3.CrossRefGoogle Scholar
  72. van Raan, A. F. J. (2008). Scaling rules in the science system: Influence of field-specific citation characteristics on the impact of research groups. Journal of the American Society for Information Science and Technology, 59(4), 565–576.  https://doi.org/10.1002/asi.20765.CrossRefGoogle Scholar
  73. van Raan, A. F. J. (2013). Universities scale like cities. Plos ONE, 8(3), e59384.  https://doi.org/10.1371/journal.pone.0059384.CrossRefGoogle Scholar
  74. Waltman, L., van Eck, N. J., van Leeuwen, T. N., Visser, M. S., & van Raan, A. F. J. (2011). Towards a new crown indicator: An empirical analysis. Scientometrics, 87(3), 467–481.  https://doi.org/10.1007/s11192-011-0354-5.CrossRefGoogle Scholar
  75. Wang, D., Song, C., & Barabasi, A. L. (2013). Quantifying long-term scientific impact. Science, 342(6154), 127–132.  https://doi.org/10.1126/science.1237825.CrossRefGoogle Scholar
  76. Wasserman, S., & Faust, K. (1999). Social network analysis: Methods and applications. New York, NY: Cambridge University Press.zbMATHGoogle Scholar
  77. Wernerfelt, B. (1984). A resource-based view of the firm. Strategic Management Journal, 5(2), 171–180.  https://doi.org/10.1002/smj.4250050207.CrossRefGoogle Scholar
  78. Winter, S. G. (2003). Understanding dynamic capabilities. Strategic Management Journal, 24, 991–995.  https://doi.org/10.1002/smj.318.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Departamento de AdministraciónUniversidad Católica del Norte, ChileAntofagastaChile
  2. 2.Departamento de TurismoUniversidad de Holguín, CubaHolguínCuba
  3. 3.Mathematical Statistics Team, RIKEN Center for Advanced Intelligence ProjectTokyoJapan

Personalised recommendations