Skip to main content

Data measurement in research information systems: metrics for the evaluation of data quality


In recent years, research information systems (RIS) have become an integral part of the university’s IT landscape. At the same time, many universities and research institutions are still working on the implementation of such information systems. Research information systems support institutions in the measurement, documentation, evaluation and communication of research activities. Implementing such integrative systems requires that institutions assure the quality of the information on research activities entered into them. Since many information and data sources are interwoven, these different data sources can have a negative impact on data quality in different research information systems. Because the topic is currently of interest to many institutions, the aim of the present paper is firstly to consider how data quality can be investigated in the context of RIS, and then to explain how various dimensions of data quality described in the literature can be measured in research information systems. Finally, a framework as a process flow according to UML activity diagram notation is developed for monitoring and improvement of the quality of these data; this framework can be implemented by technical personnel in universities and research institutions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others


  • Apel, D., Behme, W., Eberlein, R., & Merighi, C. (2015). Successfully control data quality: Practice solutions for business intelligence projects, 3rd, Revised and Extended Edition. Heidelberg: dpunkt.verlag.

  • Azeroual, O., & Abuosba, M. (2017). Improving the data quality in the research information systems. International Journal of Computer Science and Information Security, 15(11), 82–86.

    Google Scholar 

  • Azeroual, O., Saake, G., & Abuosba, M. (2018a). Data quality measures and data cleansing for research information systems. Journal of Digital Information Management, 16(1), 12–21.

    Google Scholar 

  • Azeroual, O., Saake, G., & Schallehn, E. (2018b). Analyzing data quality issues in research information systems via data profiling. International Journal of Information Management, 41(8), 50–56.

    Article  Google Scholar 

  • Batini, C., & Scannapieco, M. (2006). Data quality—Concepts methodologies and techniques. Heidelberg: Springer.

    MATH  Google Scholar 

  • Cordts, S. (2013). Data Quality in databases. Hamburg: Maren Nasutta Mana-book-Verlag.

    Google Scholar 

  • DINI AG Research Information Systems. (2015). Research information systems at universities and research institutions-position-paper.

  • English, L. P. (1999). Improving data warehouse and business information quality: Methods for reducing costs and increasing profits. New York, NY: Wiley.

    Google Scholar 

  • Gebauer, M., & Windheuser, U. (2015). Structured data analysis, profiling and business rules. Wiesbaden: Springer Fachmedien Wiesbaden.

    Google Scholar 

  • Heinrich, B., Kaiser, M., & Klier, M. (2007). How to measure data quality? A metric based approach. In 28th international conference on information systems (ICIS). Montreal.

  • Heinrich, B., & Klier, M. (2009). Die Messung der Datenqualität im Controlling – Ein metrikbasierter Ansatz und seine Anwendung im Kundenwertcontrolling. Controlling & Management: ZfCM ; Zeitschrift für Controlling und Management, 53(1), S34–42.

    Article  Google Scholar 

  • Helfert, M. (2002). Planning and measurement of data quality in data warehouse systems. Dissertation, University of St. Gallen, Difo-Druck, Bamberg.

  • Herwig, S., & Schlattmann, S. (2016). An economics-based location determination of research information systems. Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn.

  • Hildebrand, K., Gebauer, M., Hinrichs, H., & Mielke, M. (2015). Data and information quality. On the way to the information excellence, 3rd, extended edition. Wiesbaden: Springer Fachmedien Wiesbaden.

  • Hinrichs, H. (2002). Data quality management in data warehouse systems. Dissertation. Oldenburg: Oldenburg University.

  • Krcmar, H. (2015). Information management. Wiesbaden: Springer Gabler.

    Google Scholar 

  • Lee, Y. M., Pipino, L. L., Funk, J. D., & Wang, R. Y. (2006). Journey to data quality. Cambridge, MA: MIT Press.

    Google Scholar 

  • Levenshtein, V. I. (1965). Binary codes capable of correcting deletions, insertions, and reversals. Doklady Akademii Nauk SSSR, 163(4), 845–848. (Russisch, Englische Übersetzung in: Soviet Physics Doklady, 10(8): 707–710, 1966).

    MathSciNet  MATH  Google Scholar 

  • Martin, M. (2005). Measuring and improving data quality. Part II: Measuring data quality. NAHSS Outlook. Ausgabe 5.

  • Scannapieco, M., Missier, P., & Batini, C. (2005). Data quality at a glance. Datenbank-Spektrum, 5(14), 6–14.

    Google Scholar 

  • Wang, R. Y., & Strong, D. M. (1996). Beyond accuracy: What data quality means to data consumers. Journal of Management Information Systems, 12(4), 5–33.

    Article  Google Scholar 

  • Würthele, V. (2003). Data quality metrics for information processes. Zurich: ETH Zurich.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Otmane Azeroual.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azeroual, O., Saake, G. & Wastl, J. Data measurement in research information systems: metrics for the evaluation of data quality. Scientometrics 115, 1271–1290 (2018).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: