Advertisement

Scientometrics

, Volume 115, Issue 3, pp 1271–1290 | Cite as

Data measurement in research information systems: metrics for the evaluation of data quality

  • Otmane Azeroual
  • Gunter Saake
  • Jürgen Wastl
Article

Abstract

In recent years, research information systems (RIS) have become an integral part of the university’s IT landscape. At the same time, many universities and research institutions are still working on the implementation of such information systems. Research information systems support institutions in the measurement, documentation, evaluation and communication of research activities. Implementing such integrative systems requires that institutions assure the quality of the information on research activities entered into them. Since many information and data sources are interwoven, these different data sources can have a negative impact on data quality in different research information systems. Because the topic is currently of interest to many institutions, the aim of the present paper is firstly to consider how data quality can be investigated in the context of RIS, and then to explain how various dimensions of data quality described in the literature can be measured in research information systems. Finally, a framework as a process flow according to UML activity diagram notation is developed for monitoring and improvement of the quality of these data; this framework can be implemented by technical personnel in universities and research institutions.

Keywords

Current research information systems (CRIS) Research information systems (RIS) Research information Data quality Data quality dimensions Data measurement Data monitoring Science system Standardization 

References

  1. Apel, D., Behme, W., Eberlein, R., & Merighi, C. (2015). Successfully control data quality: Practice solutions for business intelligence projects, 3rd, Revised and Extended Edition. Heidelberg: dpunkt.verlag.Google Scholar
  2. Azeroual, O., & Abuosba, M. (2017). Improving the data quality in the research information systems. International Journal of Computer Science and Information Security, 15(11), 82–86.Google Scholar
  3. Azeroual, O., Saake, G., & Abuosba, M. (2018a). Data quality measures and data cleansing for research information systems. Journal of Digital Information Management, 16(1), 12–21.Google Scholar
  4. Azeroual, O., Saake, G., & Schallehn, E. (2018b). Analyzing data quality issues in research information systems via data profiling. International Journal of Information Management, 41(8), 50–56.  https://doi.org/10.1016/j.ijinfomgt.2018.02.007.CrossRefGoogle Scholar
  5. Batini, C., & Scannapieco, M. (2006). Data quality—Concepts methodologies and techniques. Heidelberg: Springer.zbMATHGoogle Scholar
  6. Cordts, S. (2013). Data Quality in databases. Hamburg: Maren Nasutta Mana-book-Verlag.Google Scholar
  7. DINI AG Research Information Systems. (2015). Research information systems at universities and research institutions-position-paper. https://dini.de/fileadmin/docs/AG_Positionspapier_engl_final.pdf.
  8. English, L. P. (1999). Improving data warehouse and business information quality: Methods for reducing costs and increasing profits. New York, NY: Wiley.Google Scholar
  9. Gebauer, M., & Windheuser, U. (2015). Structured data analysis, profiling and business rules. Wiesbaden: Springer Fachmedien Wiesbaden.Google Scholar
  10. Heinrich, B., Kaiser, M., & Klier, M. (2007). How to measure data quality? A metric based approach. In 28th international conference on information systems (ICIS). Montreal.Google Scholar
  11. Heinrich, B., & Klier, M. (2009). Die Messung der Datenqualität im Controlling – Ein metrikbasierter Ansatz und seine Anwendung im Kundenwertcontrolling. Controlling & Management: ZfCM ; Zeitschrift für Controlling und Management, 53(1), S34–42.CrossRefGoogle Scholar
  12. Helfert, M. (2002). Planning and measurement of data quality in data warehouse systems. Dissertation, University of St. Gallen, Difo-Druck, Bamberg.Google Scholar
  13. Herwig, S., & Schlattmann, S. (2016). An economics-based location determination of research information systems. Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn.Google Scholar
  14. Hildebrand, K., Gebauer, M., Hinrichs, H., & Mielke, M. (2015). Data and information quality. On the way to the information excellence, 3rd, extended edition. Wiesbaden: Springer Fachmedien Wiesbaden.Google Scholar
  15. Hinrichs, H. (2002). Data quality management in data warehouse systems. Dissertation. Oldenburg: Oldenburg University.Google Scholar
  16. Krcmar, H. (2015). Information management. Wiesbaden: Springer Gabler.Google Scholar
  17. Lee, Y. M., Pipino, L. L., Funk, J. D., & Wang, R. Y. (2006). Journey to data quality. Cambridge, MA: MIT Press.Google Scholar
  18. Levenshtein, V. I. (1965). Binary codes capable of correcting deletions, insertions, and reversals. Doklady Akademii Nauk SSSR, 163(4), 845–848. (Russisch, Englische Übersetzung in: Soviet Physics Doklady, 10(8): 707–710, 1966).MathSciNetzbMATHGoogle Scholar
  19. Martin, M. (2005). Measuring and improving data quality. Part II: Measuring data quality. NAHSS Outlook. Ausgabe 5.Google Scholar
  20. Scannapieco, M., Missier, P., & Batini, C. (2005). Data quality at a glance. Datenbank-Spektrum, 5(14), 6–14.Google Scholar
  21. Wang, R. Y., & Strong, D. M. (1996). Beyond accuracy: What data quality means to data consumers. Journal of Management Information Systems, 12(4), 5–33.CrossRefGoogle Scholar
  22. Würthele, V. (2003). Data quality metrics for information processes. Zurich: ETH Zurich.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.German Center for Higher Education Research and Science Studies (DZHW)BerlinGermany
  2. 2.Department of Computer Science, Institute for Technical and Business Information Systems Database Research GroupOtto-von-Guericke-University MagdeburgMagdeburgGermany
  3. 3.The Old SchoolsUniversity of CambridgeCambridgeUK

Personalised recommendations