Skip to main content

Inequality and collaboration patterns in Canadian nanotechnology: implications for pro-poor and gender-inclusive policy

Abstract

Policymakers and scholars are increasingly concerned with how nanotechnology can reduce inequalities and provide benefits for disadvantaged and poor communities. This paper simultaneously addresses two concerns related to nanotechnology and equity: the lack of research and development focused on nanotechnology applications that benefit developing nations (pro-poor R&D) and the lack of women in nanotechnology fields. The paper focuses on Canada, an affluent country committed to both pro-poor and gender responsive policies. Social network analysis is used to examine the relationship between gender and collaboration patterns of authors and inventors whose work is related to pro-poor applications of nanotechnology. Findings reveal that female first-authored papers have a lower citation rate and are published in higher ranked journals compared to those papers first-authored by men. Nevertheless, when women are last or corresponding authors, their papers receive equal or higher citation rates and are published in lower or similar ranked journals. Women are as, or more, collaborative as their male peers in their co-authorship and co-inventorship networks. While the majority of male authors and male inventors collaborate exclusively with men, those involved in a mixed-gender team outperform male-only teams. Women, as both authors and inventors, are involved in more gender-balanced collaboration teams. The study calls for development and implementation of gender-related policies in Canada to increase the prevalence of female scientists in collaboration networks, and to support the participation of women in pro-poor areas.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Notes

  1. 1.

    For instance, a policy that focuses on economic inequality and increasing investments in pro-poor areas, alone, might exacerbate the underrepresentation of women and gender inequalities in STEM fields as an unintended consequence.

References

  1. Abbasi, A., Hossain, L., Uddin, S., & Rasmussen, K. J. (2011). Evolutionary dynamics of scientific collaboration networks: Multi-levels and cross-time analysis. Scientometrics, 89(2), 687–710.

    Article  Google Scholar 

  2. Abramo, G., D’Angelo, C. A., & Murgia, G. (2013). Gender differences in research collaboration. Journal of Informetrics, 7(4), 811–822.

    Article  Google Scholar 

  3. Aksnes, D. W. (2003). Characteristics of highly cited papers. Research Evaluation, 12(3), 159–170.

    Article  Google Scholar 

  4. Barirani, A., Agard, B., & Beaudry, C. (2013). Discovering and assessing fields of expertise in nanomedicine: A patent co-citation network perspective. Scientometrics, 94(3), 1111–1136.

    Article  Google Scholar 

  5. Bassecoulard, E., & Zitt, M. (2004). Patents and publications. In H. F. Moed, W. Glänzel, & U. Schmoch (Eds.), Handbook of quantitative science and technology research (pp. 665–694). Dordrecht: Springer. https://doi.org/10.1007/1-4020-2755-9_31.

    Google Scholar 

  6. Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An open source software for exploring and manipulating networks. In International AAAI conference on weblogs and social media.

  7. Beaudry, C., & Schiffauerova, A. (2011). Impacts of collaboration and network indicators on patent quality: The case of Canadian nanotechnology innovation. European Management Journal, 29(5), 362–376.

    Article  Google Scholar 

  8. Beaver, D. D. (2004). Does collaborative research have greater epistemic authority? Scientometrics, 60(3), 399–408.

    Article  Google Scholar 

  9. Bentley, P. (2012). Gender differences and factors affecting publication productivity among Australian university academics. Journal of Sociology, 48(1), 85–103. https://doi.org/10.1177/1440783311411958.

    Article  Google Scholar 

  10. Berryman, S. E. (1983). Who will do science? Trends, and their causes in minority and female representation among holders of advanced degrees in science and mathematics. a special report.

  11. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D.-U. (2006). Complex networks: Structure and dynamics. Physics Reports, 424(4), 175–308.

    MathSciNet  Article  MATH  Google Scholar 

  12. Bornmann, L., & Daniel, H.-D. (2008). What do citation counts measure? A review of studies on citing behavior. Journal of Documentation, 64(1), 45–80.

    Article  Google Scholar 

  13. Cassiman, B., Glenisson, P., & Van Looy, B. (2007). Measuring industry-science links through inventor-author relations: A profiling methodology. Scientometrics, 70(2), 379–391.

    Article  Google Scholar 

  14. Clement, T. P. (2013). Authorship matrix: A rational approach to quantify individual contributions and responsibilities in multi-author scientific articles. Science and Engineering Ethics, 20(2), 345–361. https://doi.org/10.1007/s11948-013-9454-3.

    Article  Google Scholar 

  15. Costas, R., & Bordons, M. (2011). Do age and professional rank influence the order of authorship in scientific publications? Some evidence from a micro-level perspective. Scientometrics, 88(1), 145–161.

    Article  Google Scholar 

  16. Cozzens, S. (2012). The distinctive dynamics of nanotechnology in developing nations. In N. Aydogan-Duda (Ed.), Making it to the forefront, innovation, technology, and knowledge management (pp. 125–138). New York: Springer. https://doi.org/10.1007/978-1-4614-1545-9_13.

    Chapter  Google Scholar 

  17. Cozzens, S., Cortes, R., Soumonni, O., & Woodson, T. (2013). Nanotechnology and the millennium development goals: Water, energy, and agri-food. Journal of Nanoparticle Research, 15(11), 1–14.

    Article  Google Scholar 

  18. Cozzens, S., & Wetmore, J. (2011). Nanotechnology and the challenges of equity, equality and development (2nd ed.). Berlin: Springer.

    Book  Google Scholar 

  19. Daar, A. S., Martin, E., Acharya, T., Singer, P. A., & others. (2004). Will prince charles et al diminish the opportunities of developing countries in nanotechnology. Nanotechweb. org.

  20. Davarpanah, M. R., & Moghadam, H. M. (2012). The contribution of women in Iranian scholarly publication. Library Review, 61(4), 261–271. https://doi.org/10.1108/00242531211267563.

    Article  Google Scholar 

  21. de Price, D. J. S., & Beaver, D. (1966). Collaboration in an invisible college. American Psychologist, 21(11), 1011.

    Article  Google Scholar 

  22. Duque, R. B., Ynalvez, M., Sooryamoorthy, R., Mbatia, P., Dzorgbo, D.-B. S., & Shrum, W. (2005). Collaboration paradox scientific productivity, the internet, and problems of research in developing areas. Social Studies of Science, 35(5), 755–785.

    Article  Google Scholar 

  23. Eslami, H., Ebadi, A., & Schiffauerova, A. (2013). Effect of collaboration network structure on knowledge creation and technological performance: The case of biotechnology in Canada. Scientometrics, 97(1), 99–119.

    Article  Google Scholar 

  24. Ghiasi, G., Larivière, V., & Sugimoto, C. R. (2015). On the compliance of women engineers with a gendered scientific system. PLoS ONE, 10(12), e0145931.

    Article  Google Scholar 

  25. Guan, J., & Liu, N. (2014). Measuring scientific research in emerging nano-energy field. Journal of Nanoparticle Research, 16(4), 2356. https://doi.org/10.1007/s11051-014-2356-8.

    Article  Google Scholar 

  26. Hara, N., Solomon, P., Kim, S.-L., & Sonnenwald, D. H. (2003). An emerging view of scientific collaboration: Scientists’ perspectives on collaboration and factors that impact collaboration. Journal of the American Society for Information Science and Technology, 54(10), 952–965.

    Article  Google Scholar 

  27. Harsh, M., & Woodson, T. (2012). Pro-poor nanotechnology applications for water: Characterizing and contextualizing private sector research and development. Nanotechnology Law and Business, 9(3), 232–252.

    Google Scholar 

  28. Ho, Y.-S. (2012). Top-cited articles in chemical engineering in science citation index expanded: A bibliometric analysis. Chinese Journal of Chemical Engineering, 20(3), 478–488.

    Article  Google Scholar 

  29. Hobson, D. W. (2009). Commercialization of nanotechnology. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 1(2), 189–202. https://doi.org/10.1002/wnan.28.

    Google Scholar 

  30. Hu, G., Carley, S., & Tang, L. (2012). Visualizing nanotechnology research in Canada: Evidence from publication activities, 1990–2009. The Journal of Technology Transfer, 37(4), 550–562. https://doi.org/10.1007/s10961-011-9238-3.

    Article  Google Scholar 

  31. Hunter, L., & Leahey, E. (2008). Collaborative research in sociology: Trends and contributing factors. The American Sociologist, 39(4), 290–306.

    Article  Google Scholar 

  32. Jordan, C. C., Kaiser, I., & Moore, V. C. (2014). 2013 nanotechnology patent literature review: Graphitic carbon-based nanotechnology and energy applications are on the rise. Nanotechnology Law and Business, 11(2), 111–125.

    Google Scholar 

  33. Katz, J. S., & Martin, B. R. (1997). What is research collaboration? Research Policy, 26(1), 1–18.

    Article  Google Scholar 

  34. Kim, J., Lee, S., & Marschke, G. (2014). Impact of university scientists on innovations in nanotechnology. In S. Ahn, B. H. Hall, & K. Lee (Eds.), Intellectual property for economic development (pp. 141–158). Cheltenham: Edward Elgar Publishing.

    Google Scholar 

  35. Knobloch-Westerwick, S., & Glynn, C. J. (2013). The Matilda effect-role congruity effects on scholarly communication: A citation analysis of communication research and journal of communication articles. Communication Research, 40(1), 3–26. https://doi.org/10.1177/0093650211418339.

    Article  Google Scholar 

  36. Kyvik, S., & Teigen, M. (1996). Child care, research collaboration, and gender differences in scientific productivity. Science, Technology and Human Values, 21(1), 54–71.

    Article  Google Scholar 

  37. Lanjouw, J. O., & Schankerman, M. (2004). Patent quality and research productivity: Measuring innovation with multiple indicators. The Economic Journal, 114(495), 441–465.

    Article  Google Scholar 

  38. Larivière. (2014). Femmes et sciences: les premières données mondiales valident l’inégalité | Acfas | magazine Découvrir | mars 2014. Acfas.ca.

  39. Larivière, V., Ni, C., Gingras, Y., Cronin, B., & Sugimoto, C. R. (2013). Bibliometrics: Global gender disparities in science. Nature, 504(7479), 211–213. https://doi.org/10.1038/504211a.

    Article  Google Scholar 

  40. Lawani, S. (1986). Some bibliometric correlates of quality in scientific research. Scientometrics, 9(1–2), 13–25.

    Article  Google Scholar 

  41. Lee, S., & Bozeman, B. (2005). The impact of research collaboration on scientific productivity. Social Studies of Science, 35(5), 673–702.

    Article  Google Scholar 

  42. Long, J. S. (1990). The origins of sex differences in science. Social Forces, 68(4), 1297–1316.

    Article  Google Scholar 

  43. Long, J. S. (1992). Measures of sex differences in scientific productivity. Social Forces, 71(1), 159–178.

    Article  Google Scholar 

  44. Maraut, S., & Martínez, C. (2014). Identifying author–inventors from Spain: Methods and a first insight into results. Scientometrics, 101(1), 445–476. https://doi.org/10.1007/s11192-014-1409-1.

    Article  Google Scholar 

  45. Marx, W., & Bornmann, L. (2015). On the causes of subject-specific citation rates in Web of Science. Scientometrics, 102(2), 1823–1827. https://doi.org/10.1007/s11192-014-1499-9.

    Article  Google Scholar 

  46. Mattsson, P., Sundberg, C. J., & Laget, P. (2011). Is correspondence reflected in the author position? A bibliometric study of the relation between corresponding author and byline position. Scientometrics, 87(1), 99–105. https://doi.org/10.1007/s11192-010-0310-9.

    Article  Google Scholar 

  47. Meng, Y., & Shapira, P. (2011). Women and patenting in nanotechnology: Scale, scope and equity. In S. E. Cozzens & J. Wetmore (Eds.), Nanotechnology and the challenges of equity, equality and development (pp. 23–46). Berlin: Springer.

    Google Scholar 

  48. Meyer, M. (2006). Are patenting scientists the better scholars? An exploratory comparison of inventor-authors with their non-inventing peers in nano-science and technology. Research Policy, 35(10), 1646–1662.

    Article  Google Scholar 

  49. Meyer, M., & Persson, O. (1998). Nanotechnology-interdisciplinarity, patterns of collaboration and differences in application. Scientometrics, 42(2), 195–205.

    Article  Google Scholar 

  50. Miller, B. P., Duque, R., & Shrum, W. (2012). Gender, ICTs, and productivity in low-income countries panel study. Science, Technology and Human Values, 37(1), 30–63. https://doi.org/10.1177/0162243910392800.

    Article  Google Scholar 

  51. Moazami, A., Ebadi, A., & Schiffauerova, A. (2015). A network perspective of academiaindustry nanotechnology collaboration: A comparison of Canada and the United States. Collnet Journal of Scientometrics and Information Management, 9(2), 263–293. https://doi.org/10.1080/09737766.2015.1069966.

    Article  Google Scholar 

  52. Muchie, M., & Demissie, H. T. (2013). 43. Making sense of techno-optimism? The social science of nanotechnology and sustainability. Conditions and visions for change and sense-making in a rapidly changing world, 295.

  53. Nahata, M. C. (2008). Tips for writing and publishing an article. Annals of Pharmacotherapy, 42(2), 273–277. https://doi.org/10.1345/aph.1K616.

    Article  Google Scholar 

  54. Newman, M. E. (2001). The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences, 98(2), 404–409.

    MathSciNet  Article  MATH  Google Scholar 

  55. Nikulainen, T., & Palmberg, C. (2010). Transferring science-based technologies to industry—Does nanotechnology make a difference? Technovation, 30(1), 3–11.

    Article  Google Scholar 

  56. NNI. (2014). National Nanotechnology Initiative Strategic Plan. Retrieved January 5, 2017, from http://www.nano.gov/sites/default/files/pub_resource/2014_nni_strategic_plan.pdf.

  57. NSERC. (2010). Women in science and engineering in Canada. Retrieved August 2, 2016, from http://www.nserc-crsng.gc.ca/_doc/Reports-Rapports/Women_Science_Engineering_e.pdf.

  58. OECD. (2013). ‘Nanotechnology R&D’. OECD Science, Technology and Industry Scoreboard 2013, OECD Science, Technology and Industry Scoreboard. OECD Publishing.

  59. Ozel, B., Kretschmer, H., & Kretschmer, T. (2014). Co-authorship pair distribution patterns by gender. Scientometrics, 98(1), 703–723. https://doi.org/10.1007/s11192-013-1145-y.

    Article  Google Scholar 

  60. Palmberg, C., Dernis, H., & Miguet, C. (2009). Nanotechnology: An overview based on indicators and statistics. Paris: OECD.

    Book  Google Scholar 

  61. Parveen, S., & Sreevalsan-Nair, J. (2013). Visualization of small world networks using similarity matrices. In V. Bhatnagar, & S. Srinivasa (Eds.), Big data analytics. BDA 2013 (Vol. 8302). Lecture Notes in Computer Science. Springer, Cham.

  62. Pidgeon, N., Harthorn, B. H., Bryant, K., & Rogers-Hayden, T. (2009). Deliberating the risks of nanotechnologies for energy and health applications in the United States and United Kingdom. Nature Nanotechnology, 4(2), 95–98. https://doi.org/10.1038/nnano.2008.362.

    Article  Google Scholar 

  63. Porter, A. L., & Youtie, J. (2009a). How interdisciplinary is nanotechnology? Journal of Nanoparticle Research, 11(5), 1023–1041.

    Article  Google Scholar 

  64. Porter, A. L., & Youtie, J. (2009b). Where does nanotechnology belong in the map of science? Nature Nanotechnology, 4(9), 534–536.

    Article  Google Scholar 

  65. Pravdic, N., & Oluic-Vukovic, V. (1986). Dual approach to multiple authorship in the study of collaborator/scientific output relationship. Scientometrics, 10, 259–280.

    Article  Google Scholar 

  66. Prpić, K. (2002). Gender and productivity differentials in science. Scientometrics, 55(1), 27–58.

    Article  Google Scholar 

  67. Roco, M. C. (2011). The long view of nanotechnology development: the National Nanotechnology Initiative at 10 years. Journal of Nanoparticle Research, 13(2), 427–445.

    Article  Google Scholar 

  68. Rodrigues, R., Lodwick, T., Sandler, R., & Kay, W. D. (2007). Nanotechnology and the global poor: United States policy and international collaborations. In Presented at the 2007 NSTI Nanotechnology Conference and Trade Show—NSTI Nanotech 2007, Technical Proceedings (vol. 1, pp. 593–596).

  69. Rossiter, M. W. (1993). The Matthew Matilda effect in science. Social Studies of Science, 23(2), 325–341.

    Article  Google Scholar 

  70. Salamanca-Buentello, F., Persad, D. L., Martin, D. K., Daar, A. S., & Singer, P. A. (2005). Nanotechnology and the developing world. PLoS Medicine, 2(5), e97.

    Article  Google Scholar 

  71. Schiffauerova, A., & Beaudry, C. (2012). Collaboration spaces in Canadian biotechnology: A search for gatekeepers. Journal of Engineering and Technology Management, 29(2), 281–306.

    Article  Google Scholar 

  72. Schultz, L. I. (2011). Nanotechnology’s triple helix: A case study of the University at Albany’s College of Nanoscale Science and Engineering. The Journal of Technology Transfer, 36(5), 546–564.

    Article  Google Scholar 

  73. Schummer, J. (2007). Identifying ethical issues of nanotechnologies. In H. ten Have (Ed.), Nanotechnologies, ethics and politics, Ethics series. Paris, France: UNESCO Pub.

  74. SCImago Research Group. (2007). Description of SCImago journal rank indicator. Retrieved March 3, 2018, from http://www.scimagojr.com/SCImagoJournalRank.pdf.

  75. Sugimoto, C. R., Ni, C., West, J. D., & Larivière, V. (2015). The academic advantage: Gender disparities in patenting. (A. R. Hernandez Montoya, Ed.) PLOS ONE, 10(5): e0128000. https://doi.org/10.1371/journal.pone.0128000.

  76. Tahmooresnejad, L., Beaudry, C., & Schiffauerova, A. (2015). The role of public funding in nanotechnology scientific production: Where Canada stands in comparison to the United States. Scientometrics, 102(1), 753–787.

    Article  Google Scholar 

  77. Tang, J. (1997). The glass ceiling in science and engineering. The Journal of Socio-Economics, 26(4), 383–406.

    Article  Google Scholar 

  78. Tang, L., & Shapira, P. (2011). China–US scientific collaboration in nanotechnology: Patterns and dynamics. Scientometrics, 88(1), 1–16.

    Article  Google Scholar 

  79. Tartari, V., & Salter, A. (2015). The engagement gap: Exploring gender differences in University-Industry collaboration activities. Research Policy, 44(6), 1176–1191.

    Article  Google Scholar 

  80. Tscharntke, T., Hochberg, M. E., Rand, T. A., Resh, V. H., & Krauss, J. (2007). Author sequence and credit for contributions in multiauthored publications. PLoS Biology, 5(1), e18. https://doi.org/10.1371/journal.pbio.0050018.

    Article  Google Scholar 

  81. Uddin, S., Hossain, L., Abbasi, A., & Rasmussen, K. (2012). Trend and efficiency analysis of co-authorship network. Scientometrics, 90(2), 687–699.

    Article  Google Scholar 

  82. UNESCO. (2014). Report of the international bioethics committee on the principle of non-discrimination and non-stigmatization., pp. 23–7. Retrieved June 13, 2016, from http://unesdoc.unesco.org/images/0022/002211/221196E.pdf.

  83. Villanueva-Felez, A., Woolley, R., & Cañibano, C. (2015). Nanotechnology researchers’ collaboration relationships: A gender analysis of access to scientific information. Social Studies of Science, 45(1), 100–129.

    Article  Google Scholar 

  84. Waltman, L. (2012). An empirical analysis of the use of alphabetical authorship in scientific publishing. Journal of Informetrics, 6(4), 700–711.

    MathSciNet  Article  Google Scholar 

  85. Wei, W., Pfeffer, J., Reminga, J., & Carley, K. M. (2011). Handling weighted, asymmetric, self-looped, and disconnected networks in ORA. DTIC Document. Retrieved February 28, 2018, from http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA550859.

  86. West, J. D., Jacquet, J., King, M. M., Correll, S. J., & Bergstrom, C. T. (2013). The role of gender in scholarly authorship. PLoS ONE, 8(7), e66212. https://doi.org/10.1371/journal.pone.0066212.

    Article  Google Scholar 

  87. Whittington, K. B., & Smith-Doerr, L. (2005). Gender and commercial science: Women’s patenting in the life sciences. The Journal of Technology Transfer, 30(4), 355–370.

    Article  Google Scholar 

  88. Wiek, A., Foley, R. W., & Guston, D. H. (2012). Nanotechnology for sustainability: What does nanotechnology offer to address complex sustainability problems? Journal of Nanoparticle Research, 14(9), 1093. https://doi.org/10.1007/s11051-012-1093-0.

    Article  Google Scholar 

  89. Zamzami, N., & Schiffauerova, A. (2017). ‘The impact of individual collaborative activities on knowledge creation and transmission’, Scientometrics, 1–29.

  90. Zehavi, A., & Breznitz, D. (2017). Distribution sensitive innovation policies: Conceptualization and empirical examples. Research Policy, 46(1), 327–336. https://doi.org/10.1016/j.respol.2016.11.007.

    Article  Google Scholar 

  91. Zucker, L. G., & Darby, M. R. (1995). Virtuous circles of productivity: star bioscientists and the institutional transformation of industry. National Bureau of Economic Research. Retrieved February 28, 2018, from http://www.nber.org/papers/w5342.

  92. Zucker, L. G., & Darby, M. R. (1996). Star scientists and institutional transformation: Patterns of invention and innovation in the formation of the biotechnology industry. Proceedings of the National Academy of Sciences, 93(23), 12709–12716.

    Article  Google Scholar 

  93. Zucker, L. G., & Darby, M. R. (2005). Socio-economic impact of nanoscale science: Initial results and nanobank. National Bureau of Economic Research. Retrieved January 6, 2014, from http://www.nber.org/papers/w11181.

  94. Zweig, K., Neuser, W., Pipek, V., Rohde, M., & Scholtes, I. (2014). Socioinformatics—The social impact of interactions between humans and IT. Berlin: Springer.

    Book  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gita Ghiasi.

Appendix

Appendix

See Table 6.

Table 6 List of most common given names of authors and inventors and their gender

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghiasi, G., Harsh, M. & Schiffauerova, A. Inequality and collaboration patterns in Canadian nanotechnology: implications for pro-poor and gender-inclusive policy. Scientometrics 115, 785–815 (2018). https://doi.org/10.1007/s11192-018-2701-2

Download citation

Keywords

  • Nanotechnology
  • Gender
  • Pro-poor
  • Social network analysis