Abstract
Policymakers and scholars are increasingly concerned with how nanotechnology can reduce inequalities and provide benefits for disadvantaged and poor communities. This paper simultaneously addresses two concerns related to nanotechnology and equity: the lack of research and development focused on nanotechnology applications that benefit developing nations (pro-poor R&D) and the lack of women in nanotechnology fields. The paper focuses on Canada, an affluent country committed to both pro-poor and gender responsive policies. Social network analysis is used to examine the relationship between gender and collaboration patterns of authors and inventors whose work is related to pro-poor applications of nanotechnology. Findings reveal that female first-authored papers have a lower citation rate and are published in higher ranked journals compared to those papers first-authored by men. Nevertheless, when women are last or corresponding authors, their papers receive equal or higher citation rates and are published in lower or similar ranked journals. Women are as, or more, collaborative as their male peers in their co-authorship and co-inventorship networks. While the majority of male authors and male inventors collaborate exclusively with men, those involved in a mixed-gender team outperform male-only teams. Women, as both authors and inventors, are involved in more gender-balanced collaboration teams. The study calls for development and implementation of gender-related policies in Canada to increase the prevalence of female scientists in collaboration networks, and to support the participation of women in pro-poor areas.
This is a preview of subscription content, access via your institution.


























Notes
For instance, a policy that focuses on economic inequality and increasing investments in pro-poor areas, alone, might exacerbate the underrepresentation of women and gender inequalities in STEM fields as an unintended consequence.
References
Abbasi, A., Hossain, L., Uddin, S., & Rasmussen, K. J. (2011). Evolutionary dynamics of scientific collaboration networks: Multi-levels and cross-time analysis. Scientometrics, 89(2), 687–710.
Abramo, G., D’Angelo, C. A., & Murgia, G. (2013). Gender differences in research collaboration. Journal of Informetrics, 7(4), 811–822.
Aksnes, D. W. (2003). Characteristics of highly cited papers. Research Evaluation, 12(3), 159–170.
Barirani, A., Agard, B., & Beaudry, C. (2013). Discovering and assessing fields of expertise in nanomedicine: A patent co-citation network perspective. Scientometrics, 94(3), 1111–1136.
Bassecoulard, E., & Zitt, M. (2004). Patents and publications. In H. F. Moed, W. Glänzel, & U. Schmoch (Eds.), Handbook of quantitative science and technology research (pp. 665–694). Dordrecht: Springer. https://doi.org/10.1007/1-4020-2755-9_31.
Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An open source software for exploring and manipulating networks. In International AAAI conference on weblogs and social media.
Beaudry, C., & Schiffauerova, A. (2011). Impacts of collaboration and network indicators on patent quality: The case of Canadian nanotechnology innovation. European Management Journal, 29(5), 362–376.
Beaver, D. D. (2004). Does collaborative research have greater epistemic authority? Scientometrics, 60(3), 399–408.
Bentley, P. (2012). Gender differences and factors affecting publication productivity among Australian university academics. Journal of Sociology, 48(1), 85–103. https://doi.org/10.1177/1440783311411958.
Berryman, S. E. (1983). Who will do science? Trends, and their causes in minority and female representation among holders of advanced degrees in science and mathematics. a special report.
Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D.-U. (2006). Complex networks: Structure and dynamics. Physics Reports, 424(4), 175–308.
Bornmann, L., & Daniel, H.-D. (2008). What do citation counts measure? A review of studies on citing behavior. Journal of Documentation, 64(1), 45–80.
Cassiman, B., Glenisson, P., & Van Looy, B. (2007). Measuring industry-science links through inventor-author relations: A profiling methodology. Scientometrics, 70(2), 379–391.
Clement, T. P. (2013). Authorship matrix: A rational approach to quantify individual contributions and responsibilities in multi-author scientific articles. Science and Engineering Ethics, 20(2), 345–361. https://doi.org/10.1007/s11948-013-9454-3.
Costas, R., & Bordons, M. (2011). Do age and professional rank influence the order of authorship in scientific publications? Some evidence from a micro-level perspective. Scientometrics, 88(1), 145–161.
Cozzens, S. (2012). The distinctive dynamics of nanotechnology in developing nations. In N. Aydogan-Duda (Ed.), Making it to the forefront, innovation, technology, and knowledge management (pp. 125–138). New York: Springer. https://doi.org/10.1007/978-1-4614-1545-9_13.
Cozzens, S., Cortes, R., Soumonni, O., & Woodson, T. (2013). Nanotechnology and the millennium development goals: Water, energy, and agri-food. Journal of Nanoparticle Research, 15(11), 1–14.
Cozzens, S., & Wetmore, J. (2011). Nanotechnology and the challenges of equity, equality and development (2nd ed.). Berlin: Springer.
Daar, A. S., Martin, E., Acharya, T., Singer, P. A., & others. (2004). Will prince charles et al diminish the opportunities of developing countries in nanotechnology. Nanotechweb. org.
Davarpanah, M. R., & Moghadam, H. M. (2012). The contribution of women in Iranian scholarly publication. Library Review, 61(4), 261–271. https://doi.org/10.1108/00242531211267563.
de Price, D. J. S., & Beaver, D. (1966). Collaboration in an invisible college. American Psychologist, 21(11), 1011.
Duque, R. B., Ynalvez, M., Sooryamoorthy, R., Mbatia, P., Dzorgbo, D.-B. S., & Shrum, W. (2005). Collaboration paradox scientific productivity, the internet, and problems of research in developing areas. Social Studies of Science, 35(5), 755–785.
Eslami, H., Ebadi, A., & Schiffauerova, A. (2013). Effect of collaboration network structure on knowledge creation and technological performance: The case of biotechnology in Canada. Scientometrics, 97(1), 99–119.
Ghiasi, G., Larivière, V., & Sugimoto, C. R. (2015). On the compliance of women engineers with a gendered scientific system. PLoS ONE, 10(12), e0145931.
Guan, J., & Liu, N. (2014). Measuring scientific research in emerging nano-energy field. Journal of Nanoparticle Research, 16(4), 2356. https://doi.org/10.1007/s11051-014-2356-8.
Hara, N., Solomon, P., Kim, S.-L., & Sonnenwald, D. H. (2003). An emerging view of scientific collaboration: Scientists’ perspectives on collaboration and factors that impact collaboration. Journal of the American Society for Information Science and Technology, 54(10), 952–965.
Harsh, M., & Woodson, T. (2012). Pro-poor nanotechnology applications for water: Characterizing and contextualizing private sector research and development. Nanotechnology Law and Business, 9(3), 232–252.
Ho, Y.-S. (2012). Top-cited articles in chemical engineering in science citation index expanded: A bibliometric analysis. Chinese Journal of Chemical Engineering, 20(3), 478–488.
Hobson, D. W. (2009). Commercialization of nanotechnology. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 1(2), 189–202. https://doi.org/10.1002/wnan.28.
Hu, G., Carley, S., & Tang, L. (2012). Visualizing nanotechnology research in Canada: Evidence from publication activities, 1990–2009. The Journal of Technology Transfer, 37(4), 550–562. https://doi.org/10.1007/s10961-011-9238-3.
Hunter, L., & Leahey, E. (2008). Collaborative research in sociology: Trends and contributing factors. The American Sociologist, 39(4), 290–306.
Jordan, C. C., Kaiser, I., & Moore, V. C. (2014). 2013 nanotechnology patent literature review: Graphitic carbon-based nanotechnology and energy applications are on the rise. Nanotechnology Law and Business, 11(2), 111–125.
Katz, J. S., & Martin, B. R. (1997). What is research collaboration? Research Policy, 26(1), 1–18.
Kim, J., Lee, S., & Marschke, G. (2014). Impact of university scientists on innovations in nanotechnology. In S. Ahn, B. H. Hall, & K. Lee (Eds.), Intellectual property for economic development (pp. 141–158). Cheltenham: Edward Elgar Publishing.
Knobloch-Westerwick, S., & Glynn, C. J. (2013). The Matilda effect-role congruity effects on scholarly communication: A citation analysis of communication research and journal of communication articles. Communication Research, 40(1), 3–26. https://doi.org/10.1177/0093650211418339.
Kyvik, S., & Teigen, M. (1996). Child care, research collaboration, and gender differences in scientific productivity. Science, Technology and Human Values, 21(1), 54–71.
Lanjouw, J. O., & Schankerman, M. (2004). Patent quality and research productivity: Measuring innovation with multiple indicators. The Economic Journal, 114(495), 441–465.
Larivière. (2014). Femmes et sciences: les premières données mondiales valident l’inégalité | Acfas | magazine Découvrir | mars 2014. Acfas.ca.
Larivière, V., Ni, C., Gingras, Y., Cronin, B., & Sugimoto, C. R. (2013). Bibliometrics: Global gender disparities in science. Nature, 504(7479), 211–213. https://doi.org/10.1038/504211a.
Lawani, S. (1986). Some bibliometric correlates of quality in scientific research. Scientometrics, 9(1–2), 13–25.
Lee, S., & Bozeman, B. (2005). The impact of research collaboration on scientific productivity. Social Studies of Science, 35(5), 673–702.
Long, J. S. (1990). The origins of sex differences in science. Social Forces, 68(4), 1297–1316.
Long, J. S. (1992). Measures of sex differences in scientific productivity. Social Forces, 71(1), 159–178.
Maraut, S., & Martínez, C. (2014). Identifying author–inventors from Spain: Methods and a first insight into results. Scientometrics, 101(1), 445–476. https://doi.org/10.1007/s11192-014-1409-1.
Marx, W., & Bornmann, L. (2015). On the causes of subject-specific citation rates in Web of Science. Scientometrics, 102(2), 1823–1827. https://doi.org/10.1007/s11192-014-1499-9.
Mattsson, P., Sundberg, C. J., & Laget, P. (2011). Is correspondence reflected in the author position? A bibliometric study of the relation between corresponding author and byline position. Scientometrics, 87(1), 99–105. https://doi.org/10.1007/s11192-010-0310-9.
Meng, Y., & Shapira, P. (2011). Women and patenting in nanotechnology: Scale, scope and equity. In S. E. Cozzens & J. Wetmore (Eds.), Nanotechnology and the challenges of equity, equality and development (pp. 23–46). Berlin: Springer.
Meyer, M. (2006). Are patenting scientists the better scholars? An exploratory comparison of inventor-authors with their non-inventing peers in nano-science and technology. Research Policy, 35(10), 1646–1662.
Meyer, M., & Persson, O. (1998). Nanotechnology-interdisciplinarity, patterns of collaboration and differences in application. Scientometrics, 42(2), 195–205.
Miller, B. P., Duque, R., & Shrum, W. (2012). Gender, ICTs, and productivity in low-income countries panel study. Science, Technology and Human Values, 37(1), 30–63. https://doi.org/10.1177/0162243910392800.
Moazami, A., Ebadi, A., & Schiffauerova, A. (2015). A network perspective of academiaindustry nanotechnology collaboration: A comparison of Canada and the United States. Collnet Journal of Scientometrics and Information Management, 9(2), 263–293. https://doi.org/10.1080/09737766.2015.1069966.
Muchie, M., & Demissie, H. T. (2013). 43. Making sense of techno-optimism? The social science of nanotechnology and sustainability. Conditions and visions for change and sense-making in a rapidly changing world, 295.
Nahata, M. C. (2008). Tips for writing and publishing an article. Annals of Pharmacotherapy, 42(2), 273–277. https://doi.org/10.1345/aph.1K616.
Newman, M. E. (2001). The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences, 98(2), 404–409.
Nikulainen, T., & Palmberg, C. (2010). Transferring science-based technologies to industry—Does nanotechnology make a difference? Technovation, 30(1), 3–11.
NNI. (2014). National Nanotechnology Initiative Strategic Plan. Retrieved January 5, 2017, from http://www.nano.gov/sites/default/files/pub_resource/2014_nni_strategic_plan.pdf.
NSERC. (2010). Women in science and engineering in Canada. Retrieved August 2, 2016, from http://www.nserc-crsng.gc.ca/_doc/Reports-Rapports/Women_Science_Engineering_e.pdf.
OECD. (2013). ‘Nanotechnology R&D’. OECD Science, Technology and Industry Scoreboard 2013, OECD Science, Technology and Industry Scoreboard. OECD Publishing.
Ozel, B., Kretschmer, H., & Kretschmer, T. (2014). Co-authorship pair distribution patterns by gender. Scientometrics, 98(1), 703–723. https://doi.org/10.1007/s11192-013-1145-y.
Palmberg, C., Dernis, H., & Miguet, C. (2009). Nanotechnology: An overview based on indicators and statistics. Paris: OECD.
Parveen, S., & Sreevalsan-Nair, J. (2013). Visualization of small world networks using similarity matrices. In V. Bhatnagar, & S. Srinivasa (Eds.), Big data analytics. BDA 2013 (Vol. 8302). Lecture Notes in Computer Science. Springer, Cham.
Pidgeon, N., Harthorn, B. H., Bryant, K., & Rogers-Hayden, T. (2009). Deliberating the risks of nanotechnologies for energy and health applications in the United States and United Kingdom. Nature Nanotechnology, 4(2), 95–98. https://doi.org/10.1038/nnano.2008.362.
Porter, A. L., & Youtie, J. (2009a). How interdisciplinary is nanotechnology? Journal of Nanoparticle Research, 11(5), 1023–1041.
Porter, A. L., & Youtie, J. (2009b). Where does nanotechnology belong in the map of science? Nature Nanotechnology, 4(9), 534–536.
Pravdic, N., & Oluic-Vukovic, V. (1986). Dual approach to multiple authorship in the study of collaborator/scientific output relationship. Scientometrics, 10, 259–280.
Prpić, K. (2002). Gender and productivity differentials in science. Scientometrics, 55(1), 27–58.
Roco, M. C. (2011). The long view of nanotechnology development: the National Nanotechnology Initiative at 10 years. Journal of Nanoparticle Research, 13(2), 427–445.
Rodrigues, R., Lodwick, T., Sandler, R., & Kay, W. D. (2007). Nanotechnology and the global poor: United States policy and international collaborations. In Presented at the 2007 NSTI Nanotechnology Conference and Trade Show—NSTI Nanotech 2007, Technical Proceedings (vol. 1, pp. 593–596).
Rossiter, M. W. (1993). The Matthew Matilda effect in science. Social Studies of Science, 23(2), 325–341.
Salamanca-Buentello, F., Persad, D. L., Martin, D. K., Daar, A. S., & Singer, P. A. (2005). Nanotechnology and the developing world. PLoS Medicine, 2(5), e97.
Schiffauerova, A., & Beaudry, C. (2012). Collaboration spaces in Canadian biotechnology: A search for gatekeepers. Journal of Engineering and Technology Management, 29(2), 281–306.
Schultz, L. I. (2011). Nanotechnology’s triple helix: A case study of the University at Albany’s College of Nanoscale Science and Engineering. The Journal of Technology Transfer, 36(5), 546–564.
Schummer, J. (2007). Identifying ethical issues of nanotechnologies. In H. ten Have (Ed.), Nanotechnologies, ethics and politics, Ethics series. Paris, France: UNESCO Pub.
SCImago Research Group. (2007). Description of SCImago journal rank indicator. Retrieved March 3, 2018, from http://www.scimagojr.com/SCImagoJournalRank.pdf.
Sugimoto, C. R., Ni, C., West, J. D., & Larivière, V. (2015). The academic advantage: Gender disparities in patenting. (A. R. Hernandez Montoya, Ed.) PLOS ONE, 10(5): e0128000. https://doi.org/10.1371/journal.pone.0128000.
Tahmooresnejad, L., Beaudry, C., & Schiffauerova, A. (2015). The role of public funding in nanotechnology scientific production: Where Canada stands in comparison to the United States. Scientometrics, 102(1), 753–787.
Tang, J. (1997). The glass ceiling in science and engineering. The Journal of Socio-Economics, 26(4), 383–406.
Tang, L., & Shapira, P. (2011). China–US scientific collaboration in nanotechnology: Patterns and dynamics. Scientometrics, 88(1), 1–16.
Tartari, V., & Salter, A. (2015). The engagement gap: Exploring gender differences in University-Industry collaboration activities. Research Policy, 44(6), 1176–1191.
Tscharntke, T., Hochberg, M. E., Rand, T. A., Resh, V. H., & Krauss, J. (2007). Author sequence and credit for contributions in multiauthored publications. PLoS Biology, 5(1), e18. https://doi.org/10.1371/journal.pbio.0050018.
Uddin, S., Hossain, L., Abbasi, A., & Rasmussen, K. (2012). Trend and efficiency analysis of co-authorship network. Scientometrics, 90(2), 687–699.
UNESCO. (2014). Report of the international bioethics committee on the principle of non-discrimination and non-stigmatization., pp. 23–7. Retrieved June 13, 2016, from http://unesdoc.unesco.org/images/0022/002211/221196E.pdf.
Villanueva-Felez, A., Woolley, R., & Cañibano, C. (2015). Nanotechnology researchers’ collaboration relationships: A gender analysis of access to scientific information. Social Studies of Science, 45(1), 100–129.
Waltman, L. (2012). An empirical analysis of the use of alphabetical authorship in scientific publishing. Journal of Informetrics, 6(4), 700–711.
Wei, W., Pfeffer, J., Reminga, J., & Carley, K. M. (2011). Handling weighted, asymmetric, self-looped, and disconnected networks in ORA. DTIC Document. Retrieved February 28, 2018, from http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA550859.
West, J. D., Jacquet, J., King, M. M., Correll, S. J., & Bergstrom, C. T. (2013). The role of gender in scholarly authorship. PLoS ONE, 8(7), e66212. https://doi.org/10.1371/journal.pone.0066212.
Whittington, K. B., & Smith-Doerr, L. (2005). Gender and commercial science: Women’s patenting in the life sciences. The Journal of Technology Transfer, 30(4), 355–370.
Wiek, A., Foley, R. W., & Guston, D. H. (2012). Nanotechnology for sustainability: What does nanotechnology offer to address complex sustainability problems? Journal of Nanoparticle Research, 14(9), 1093. https://doi.org/10.1007/s11051-012-1093-0.
Zamzami, N., & Schiffauerova, A. (2017). ‘The impact of individual collaborative activities on knowledge creation and transmission’, Scientometrics, 1–29.
Zehavi, A., & Breznitz, D. (2017). Distribution sensitive innovation policies: Conceptualization and empirical examples. Research Policy, 46(1), 327–336. https://doi.org/10.1016/j.respol.2016.11.007.
Zucker, L. G., & Darby, M. R. (1995). Virtuous circles of productivity: star bioscientists and the institutional transformation of industry. National Bureau of Economic Research. Retrieved February 28, 2018, from http://www.nber.org/papers/w5342.
Zucker, L. G., & Darby, M. R. (1996). Star scientists and institutional transformation: Patterns of invention and innovation in the formation of the biotechnology industry. Proceedings of the National Academy of Sciences, 93(23), 12709–12716.
Zucker, L. G., & Darby, M. R. (2005). Socio-economic impact of nanoscale science: Initial results and nanobank. National Bureau of Economic Research. Retrieved January 6, 2014, from http://www.nber.org/papers/w11181.
Zweig, K., Neuser, W., Pipek, V., Rohde, M., & Scholtes, I. (2014). Socioinformatics—The social impact of interactions between humans and IT. Berlin: Springer.
Author information
Authors and Affiliations
Corresponding author
Appendix
Appendix
See Table 6.
Rights and permissions
About this article
Cite this article
Ghiasi, G., Harsh, M. & Schiffauerova, A. Inequality and collaboration patterns in Canadian nanotechnology: implications for pro-poor and gender-inclusive policy. Scientometrics 115, 785–815 (2018). https://doi.org/10.1007/s11192-018-2701-2
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11192-018-2701-2
Keywords
- Nanotechnology
- Gender
- Pro-poor
- Social network analysis