, Volume 115, Issue 2, pp 1097–1100 | Cite as

Allegation of scientific misconduct increases Twitter attention

  • Lutz Bornmann
  • Robin Haunschild


The web-based microblogging platform Twitter is a very popular altmetrics source for measuring the broader impact of science. In this case study, we demonstrate how problematic the use of Twitter data for research evaluation can be, even though the aspiration of measurement is degraded from impact to attention measurement. We collected the Twitter data for the paper published by Yamamizu et al. (Stem Cell Rep 8(3):634–647, 2017. doi: An investigative committee found that the main figures in the paper are fraudulent.


Twitter Altmetrics Scientific misconduct 


  1. Bornmann, L. (2014). Do altmetrics point to the broader impact of research? An overview of benefits and disadvantages of altmetrics. Journal of Informetrics, 8(4), 895–903. Scholar
  2. Colledge, L. (2014). Snowball metrics recipe book. Amsterdam: Snowball Metrics Program Partners.Google Scholar
  3. Gross, C. (2016). Scientific misconduct. Annual Review of Psychology. Scholar
  4. Haustein, S. (2014). Readership metrics. In B. Cronin & C. R. Sugimoto (Eds.), Beyond bibliometrics: Harnessing multi-dimensional indicators of performance (pp. 327–344). Cambridge, MA: MIT Press.Google Scholar
  5. Mas-Bleda, A., & Thelwall, M. (2016). Can alternative indicators overcome language biases in citation counts? A comparison of Spanish and UK research. Scientometrics, 109(3), 2007–2030. Scholar
  6. Moed, H. F. (2017). Applied evaluative informetrics. Heidelberg: Springer.CrossRefGoogle Scholar
  7. Mohammadi, E., Thelwall, M., & Kousha, K. (2016). Can Mendeley bookmarks reflect readership? A survey of user motivations. Journal of the Association for Information Science and Technology, 67(5), 1198–1209.CrossRefGoogle Scholar
  8. Pooladian, A., & Borrego, Á. (2016). A longitudinal study of the bookmarking of library and information science literature in Mendeley. Journal of Informetrics, 10(4), 1135–1142. Scholar
  9. Robinson-Garcia, N., Costas, R., Isett, K., Melkers, J., & Hicks, D. (2017). The unbearable emptiness of tweeting: About journal articles. PLoS ONE, 12(8), e0183551. Scholar
  10. Shuai, X., Rollins, J., Moulinier, I., Custis, T., Edmunds, M., & Schilder, F. (2017). A Multidimensional Investigation of the effects of publication retraction on scholarly impact. Journal of the Association for Information Science and Technology, 68(9), 2225–2236. Scholar
  11. Sugimoto, C. (2016). “Attention is not impact” and other challenges for altmetrics. Retrieved September, 9, 2016, from
  12. Sugimoto, C. R., Work, S., Larivière, V., & Haustein, S. (2016). Scholarly use of social media and altmetrics: A review of the literature. Retrieved April, 5, 2017, from
  13. Wilsdon, J., Allen, L., Belfiore, E., Campbell, P., Curry, S., Hill, S., et al. (2015). The metric tide: Report of the independent review of the role of metrics in research assessment and management. Bristol: Higher Education Funding Council for England (HEFCE).CrossRefGoogle Scholar
  14. Yamamizu, K., Iwasaki, M., Takakubo, H., Sakamoto, T., Ikuno, T., Miyoshi, M., et al. (2017). In vitro modeling of blood-brain barrier with human iPSC-derived endothelial cells, pericytes, neurons, and astrocytes via notch signaling. Stem Cell Reports, 8(3), 634–647. Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Division for Science and Innovation StudiesAdministrative Headquarters of the Max Planck SocietyMunichGermany
  2. 2.Max Planck Institute for Solid State ResearchStuttgartGermany

Personalised recommendations